2 resultados para T Cell Antigen Receptor

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last few years, the introduction of chimeric antigen receptor (CAR) T-cell therapy into clinical practice has revolutionized the approach to patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL), whose outcome used to be dismal with median overall survival (OS) of approximately 6 months with standard salvage therapy. At our Institute, we started treating diffuse large B-cell lymphoma (DLBCL) patients with CAR T-cell products in August 2019 and they received either axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel) as per regulatory indications. This research project presents the 2-year follow-up of the first 53 treated patients. Our first aim is to investigate the feasibility of this treatment strategy in a real-world setting, although the reimbursement criteria set by the Italian Medicines Agency (Agenzia Italiana del Farmaco, AIFA) are very similar to the inclusion criteria of clinical trials and stricter than those established by the regulatory authorities of many foreign countries. One month after infusion, the ORR was 66% with 19 patients already in CR (38%). Restaging at 3, 6 and 12 months post-infusion shows that early CRs tend to be maintained over time and, moreover, that a considerable number of PRs and a few SDs can improve into a CR. The safety data were consistent with what is reported in the literature; toxicity was generally manageable, largely due to the increasing expertise in handling the specific adverse events related to CAR T-cell therapy. Our results confirms that CAR T-cell therapy is both safe and effective in a real-life setting and that it represents a crucial weapon in a subset of patients who were previously doomed to an inevitably severe prognosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bioinformatic analysis of Group A Streptococcus (GAS) genomes aiming at the identification of new vaccine antigens, revealed the presence of a gene coding for a putative surface-associated protein, named GAS40, inducing protective antibodies in an animal model of sepsis. The aim of our study was to unravel the involvement of GAS40 in cell division processes and to identify the putative interactor. Firstly, bioinformatic analysis showed that gas40 shares homology with ezrA, a gene coding for a negative regulator of Z-ring formation during cell division process. Both scanning and transmission electron microscopy indicated morphological differences between wild-type and the GAS40 knock-out mutant strain, with the latter showing an impaired capacity to divide resulting in the formation of very long chains. Moreover, when the localization of the antigen on the bacterial surface was analyzed, we found that in bacteria grown at exponential phase GAS40 specifically localized at septum, indicating a possible role in cell division. Furthermore, by ELISA and co-sedimentation assays, we found that GAS40 is able to interact with FtsZ, a protein involved in Z-ring formation during cell division process. These data together with the co-localization of GAS40/FtsZ at bacterial septum demonstrated by by confocal microscopy, strongly support the hypothesis for a key role of GAS40 in bacterial cell division.