2 resultados para Systemic inflammation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Physiological and environmental stressors can disrupt barrier integrity at epithelial interfaces (e.g., uterine, mammary, intestinal, and lung), which are constantly exposed to pathogens that can lead to the activation of the immune system. Unresolved inflammation can result in the emergence of metabolic and infectious diseases. Maintaining cow health and performance during periods of immune activation such as in the peripartum or under heat stress represents a significant obstacle to the dairy industry. Feeding microencapsulated organic acids and pure botanicals (OAPB) has shown to improve intestinal health in monogastric species and prevent systemic inflammation via the gut-liver axis. Feeding unsaturated fatty acids (FA) such as oleic acid (OA) and very-long-chain omega-3 (VLC n-3) FA are of interest in dairy cow nutrition because of their potential to improve health, fertility, and milk production. In the first study, we evaluated the effects of heat stress (HS) conditions and dietary OAPB supplementation on gut permeability and milk production. In parallel with an improved milk performance and N metabolism, cows supplemented with OAPB also had an enhanced hepatic methyl donor status and greater inflammatory and oxidative stress status compared to the HS control group. In a second study, we evaluated the relative bioavailability of VLC n-3 in cows fed a bolus of rumen-protected (RP) fish oil (FO). In a third study, we proved the interaction between RPFO and RP choline to promote the synthesis of phosphatydilcholines. Lipid forms that support hepatic triglyceride export and can prevent steatosis in dairy cows. The last study, demonstrated that algae oil outperforms against a toxin challenge compared to FO and that feeding RPOA modulates energy partitioning relative to n-3 FA-containing oils. Overall, this thesis confirms the need and the effectiveness of different strategies that aimed to improve dairy cows’ health and performance under heat stress, inflammation or metabolic disease.
Resumo:
Primary myelofibrosis is a clonal hematopoietic disorder characterized by marked degrees of systemic inflammation. The release of pro-inflammatory factors by clonal hematopoietic cell populations cause the remodeling of a specialized microenvironment, defined niche, in which the hematopoietic stem cells reside. The main source of pro-inflammatory cytokines is represented by malignant megakaryocytes. The bone marrow and spleen from myelofibrosis patients, as well as those from the Gata1low mouse model of the disease, contain increased number of abnormal megakaryocytes. These cells express on their surface high levels of the adhesion receptor P-selectin that, by triggering a pathological megakaryocyte-neutrophil emperipolesis, lead to increased bioavailability of TGF-β1 in the microenvironment and disease progression. Gata1low mice develop with age a phenotype similar to that of patients with myelofibrosis. We previously demonstrated that deletion of the P-selectin gene in Gata1low mice prevented the development of the myelofibrotic phenotype in these mice. In the current study, we tested the hypothesis that pharmacological inhibition of P-selectin may rescue the fibrotic phenotype of Gata1low mice. To test this hypothesis, we have investigated the phenotype expressed by old Gata1low mice treated with the anti-mouse monoclonal antibody against P-selectin RB40.34, alone or in combination with the JAK2 inhibitor Ruxolitinib. The results showed that the combined therapy normalized the phenotype of Gata1low mice with limited toxicity by reducing fibrosis, TGF-β1 and CXCL1 content in the BM and spleen and by restoring hematopoiesis in the bone marrow and the normal architecture of the spleen. In conclusion, pharmacological inhibition of P-selectin was effective in targeting malignant megakaryocytes and the microenvironmental abnormalities that affect the hematopoietic stem cell compartment in this model. These results suggest that P-selectin and JAK1/2 inhibitors in combination may represent a valid therapeutic option for patients with myelofibrosis.