6 resultados para Swallowing Disorders
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
With life expectancies increasing around the world, populations are getting age and neurodegenerative diseases have become a global issue. For this reason we have focused our attention on the two most important neurodegenerative diseases: Parkinson’s and Alzheimer’s. Parkinson’s disease is a chronic progressive neurodegenerative movement disorder of multi-factorial origin. Environmental toxins as well as agricultural chemicals have been associated with PD. Has been observed that N/OFQ contributes to both neurotoxicity and symptoms associated with PD and that pronociceptin gene expression is up-regulated in rat SN of 6-OHDA and MPP induced experimental parkinsonism. First, we investigated the role of N/OFQ-NOP system in the pathogenesis of PD in an animal model developed using PQ and/or MB. Then we studied Alzheimer's disease. This disorder is defined as a progressive neurologic disease of the brain leading to the irreversible loss of neurons and the loss of intellectual abilities, including memory and reasoning, which become severe enough to impede social or occupational functioning. Effective biomarker tests could prevent such devastating damage occurring. We utilized the peripheral blood cells of AD discordant monozygotic twin in the search of peripheral markers which could reflect the pathology within the brain, and also support the hypothesis that PBMC might be a useful model of epigenetic gene regulation in the brain. We investigated the mRNA levels in several genes involve in AD pathogenesis, as well DNA methylation by MSP Real-Time PCR. Finally by Western Blotting we assess the immunoreactivity levels for histone modifications. Our results support the idea that epigenetic changes assessed in PBMCs can also be useful in neurodegenerative disorders, like AD and PD, enabling identification of new biomarkers in order to develop early diagnostic programs.
Resumo:
Several studies support the use of probiotics for the treatment of minor gastrointestinal problems in infants. Positive effects on newborn colics have been evidenced after administration of Lactobacillus strains, whereas no studies have been reported regarding the use of bifidobacteria for this purpose. This work was therefore aimed at the characterization of Bifidobacterium strains capable of inhibiting the growth of pathogens typical of the infant gastro-intestinal tract and of coliforms isolated from colic newborns. Among the 46 Bifidobacterium strains considered, 16 showed high antimicrobial activity against potential pathogens; these strains were further characterized from a taxonomic point of view, for the presence and transferability of antibiotic resistances, for citotoxic effects and adhesion to non tumorigenic gut epithelium cell lines. Moreover, their ability to stimulate gut health by increasing the metabolic activity and the immune response of epithelial cells was also studied. The examination of all these features allowed to identify 3 B. breve strains and a B. longum subsp. longum strain as potential probiotics for the treatments of enteric disorders in newborns such as infantile colics. The formulation of a synbiotic product with an appropriate prebiotic fiber capable of supporting the growth of the selected Bifidobacterium strains was also considered in this study. In this respect the ability of the 4 selected Bifidobacterium strains to use as the sole carbon source and energy source different polisaccharide fibers was investigated The last phase of the work has been dedicated to the evaluation of the gut microbial diversity in newborns whose mothers has been subjected to antibiotic therapy a few hours before the delivery because of a Streptococcus type B infection. These newborns can represent a possible target for the probiotic strains selected in this work.
Resumo:
The aim of the dissertation was to test the feasibility of a new psychotherapeutic protocol for treating children and adolescents with mood and anxiety disorders: Child-Well-Being Therapy (CWBT). It originates from adult Well-Being Therapy protocol (WBT) and represents a conceptual innovation for treating affective disorders. WBT is based on the multidimensional model of well-being postulated by Ryff (eudaimonic perspective), in sequential combination with cognitive-behavioral therapy (CBT). Results showed that eudaimonic well-being was impaired in children with affective disorders in comparison with matched healthy students. A first open investigation aimed at exploring the feasibility of a 8-session CWBT protocol in a group of children with emotional and behavioural disorders has been implemented. Data showed how CWBT resulted associated to symptoms reduction, together with the decrease of externalizing problems, maintained at 1-year follow-up. CWBT triggered also an improvement in psychological well-being as well as an increasing flourishing trajectory over time. Subsequently, a modified and extended version of CWBT (12-sessions) has been developed and then tested in a controlled study with 34 patients (8 to 16 years) affected by mood and anxiety disorders. They were consecutively randomized into 3 different groups: CWBT, CBT, 6-month waiting list (WL). Both treatments resulted effective in decreasing distress and in improving well-being. Moreover, CWBT was associated with higher improvement in anxiety and showed a greater recovery rate (83%) than CBT (54%). Both groups maintained beneficial effects and CWBT group displayed a lower level of distress as well as a higher positive trend in well-being scores over time. Findings need to be interpret with caution, because of study limitations, however important clinical implications emerged. Further investigations should determine whether the sequential integration of well-being and symptom-oriented strategies could play an important role in children and adolescents’ psychotherapeutic options, fostering a successful adaptation to adversities during the growth process.
Resumo:
This case-control study involved a total of 29 autistic children (Au) aged 6 to 12 years, and 28 gender and age-matched typically developing children (TD). We evaluated a high number of peripheral oxidative stress parameters, erythrocyte and lymphocyte membrane functional features and membrane lipid composition of erythrocyte. Erythrocyte TBARS, Peroxiredoxin II, Protein Carbonyl Groups and urinary HEL and isoprostane levels were elevated in AU (confirming an imbalance of the redox status of Au); other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma Total antioxidant capacity and plasma carbonyl groups, erythrocyte SOD and catalase activities) were unchanged, whilst peroxiredoxin I showed a trend of elevated levels in red blood cells of Au children. A very significant reduction of both erythrocyte and lymphocyte Na+, K+-ATPase activity (NKA), a reduction of erythrocyte membrane fluidity, a reduction of phospatydyl serine exposition on erythrocyte membranes, an alteration in erythrocyte fatty acid membrane profile (increase in MUFA and in ω6/ω3 ratio due to decrease in EPA and DHA) and a reduction of cholesterol content of erythrocyte membrane were found in Au compared to TD, without change in erythrocyte membrane sialic acid content and in lymphocyte membrane fluidity. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity, and ADOS and CARS score are inversely related to peroxiredoxin II levels. Oxidative stress and erythrocyte structural and functional alterations may play a role in the pathogenesis of Autism Spectrum Disorders and could be potentially utilized as peripheral biomarkers.
Resumo:
Movement analysis carried out in laboratory settings is a powerful, but costly solution since it requires dedicated instrumentation, space and personnel. Recently, new technologies such as the magnetic and inertial measurement units (MIMU) are becoming widely accepted as tools for the assessment of human motion in clinical and research settings. They are relatively easy-to-use and potentially suitable for estimating gait kinematic features, including spatio-temporal parameters. The objective of this thesis regards the development and testing in clinical contexts of robust MIMUs based methods for assessing gait spatio-temporal parameters applicable across a number of different pathological gait patterns. First, considering the need of a solution the least obtrusive as possible, the validity of the single unit based approach was explored. A comparative evaluation of the performance of various methods reported in the literature for estimating gait temporal parameters using a single unit attached to the trunk first in normal gait and then in different pathological gait conditions was performed. Then, the second part of the research headed towards the development of new methods for estimating gait spatio-temporal parameters using shank worn MIMUs on different pathological subjects groups. In addition to the conventional gait parameters, new methods for estimating the changes of the direction of progression were explored. Finally, a new hardware solution and relevant methodology for estimating inter-feet distance during walking was proposed. Results of the technical validation of the proposed methods at different walking speeds and along different paths against a gold standard were reported and showed that the use of two MIMUs attached to the lower limbs associated with a robust method guarantee a much higher accuracy in determining gait spatio-temporal parameters. In conclusion, the proposed methods could be reliably applied to various abnormal gaits obtaining in some cases a comparable level of accuracy with respect to normal gait.
Resumo:
Autism Spectrum Disorders (ASDs) describe a set of neurodevelopmental disorders. ASD represents a significant public health problem. Currently, ASDs are not diagnosed before the 2nd year of life but an early identification of ASDs would be crucial as interventions are much more effective than specific therapies starting in later childhood. To this aim, cheap an contact-less automatic approaches recently aroused great clinical interest. Among them, the cry and the movements of the newborn, both involving the central nervous system, are proposed as possible indicators of neurological disorders. This PhD work is a first step towards solving this challenging problem. An integrated system is presented enabling the recording of audio (crying) and video (movements) data of the newborn, their automatic analysis with innovative techniques for the extraction of clinically relevant parameters and their classification with data mining techniques. New robust algorithms were developed for the selection of the voiced parts of the cry signal, the estimation of acoustic parameters based on the wavelet transform and the analysis of the infant’s general movements (GMs) through a new body model for segmentation and 2D reconstruction. In addition to a thorough literature review this thesis presents the state of the art on these topics that shows that no studies exist concerning normative ranges for newborn infant cry in the first 6 months of life nor the correlation between cry and movements. Through the new automatic methods a population of control infants (“low-risk”, LR) was compared to a group of “high-risk” (HR) infants, i.e. siblings of children already diagnosed with ASD. A subset of LR infants clinically diagnosed as newborns with Typical Development (TD) and one affected by ASD were compared. The results show that the selected acoustic parameters allow good differentiation between the two groups. This result provides new perspectives both diagnostic and therapeutic.