2 resultados para Sustainable Urban Planning and Development

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following Ph.D work was mainly focused on catalysis, as a key technology, to achieve the objectives of sustainable (green) chemistry. After introducing the concepts of sustainable (green) chemistry and an assessment of new sustainable chemical technologies, the relationship between catalysis and sustainable (green) chemistry was briefly discussed and illustrated via an analysis of some selected and relevant examples. Afterwards, as a continuation of the ongoing interest in Dr. Marco Bandini’s group on organometallic and organocatalytic processes, I addressed my efforts to the design and development of novel catalytic green methodologies for the synthesis of enantiomerically enriched molecules. In the first two projects the attention was focused on the employment of solid supports to carry out reactions that still remain a prerogative of omogeneous catalysis. Firstly, particular emphasis was addressed to the discovery of catalytic enantioselective variants of nitroaldol condensation (commonly termed Henry reaction), using a complex consisting in a polyethylene supported diamino thiopene (DATx) ligands and copper as active species. In the second project, a new class of electrochemically modified surfaces with DATx palladium complexes was presented. The DATx-graphite system proved to be efficient in promoting the Suzuki reaction. Moreover, in collaboration with Prof. Wolf at the University of British Columbia (Vancouver), cyclic voltammetry studies were reported. This study disclosed new opportunities for carbon–carbon forming processes by using heterogeneous, electrodeposited catalyst films. A straightforward metal-free catalysis allowed the exploration around the world of organocatalysis. In fact, three different and novel methodologies, using Cinchona, Guanidine and Phosphine derivatives, were envisioned in the three following projects. An interesting variant of nitroaldol condensation with simple trifluoromethyl ketones and also their application in a non-conventional activation of indolyl cores by Friedel-Crafts-functionalization, led to two novel synthetic protocols. These approaches allowed the preparation of synthetically useful trifluoromethyl derivatives bearing quaternary stereocenters. Lastly, in the sixth project the first γ-alkylation of allenoates with conjugated carbonyl compounds was envisioned. In the last part of this Ph.D thesis bases on an extra-ordinary collaboration with Prof. Balzani and Prof. Gigli, I was involved in the synthesis and characterization of a new type of heteroleptic cyclometaled-Ir(III) complexes, bearing bis-oxazolines (BOXs) as ancillary ligands. The new heteroleptic complexes were fully characterized and in order to examine the electroluminescent properties of FIrBOX(CH2), an Organic Light Emitting Device was realized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades, the building materials and construction industry has been contributing to a great extent to generate a high impact on our environment. As it has been considered one of the key areas in which to operate to significantly reduce our footprint on environment, there has been widespread belief that particular attention now has to be paid and specific measures have to be taken to limit the use of non-renewable resources.The aim of this thesis is therefore to study and evaluate sustainable alternatives to commonly used building materials, mainly based on ordinary Portland Cement, and find a supportable path to reduce CO2 emissions and promote the re-use of waste materials. More specifically, this research explores different solutions for replacing cementitious binders in distinct application fields, particularly where special and more restricting requirements are needed, such as restoration and conservation of architectural heritage. Emphasis was thus placed on aspects and implications more closely related to the concept of non-invasivity and environmental sustainability. A first part of the research was addressed to the study and development of sustainable inorganic matrices, based on lime putty, for the pre-impregnation and on-site binding of continuous carbon fiber fabrics for structural rehabilitation and heritage restoration. Moreover, with the aim to further limit the exploitation of non-renewable resources, the synthesis of chemically activated silico-aluminate materials, as metakaolin, ladle slag or fly ash, was thus successfully achieved. New sustainable binders were hence proposed as novel building materials, suitable to be used as primary component for construction and repair mortars, as bulk materials in high-temperature applications or as matrices for high-toughness fiber reinforced composites.