12 resultados para Surface active agents

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional logic gates are rapidly reaching the limits of miniaturization. Overheating of these components is no longer negligible. A new physical approach to the machine was proposed by Prof. C S. Lent “Molecular Quantum cellular automata”. Indeed the quantum-dot cellular automata (QCA) approach offers an attractive alternative to diode or transistor devices. Th units encode binary information by two polarizations without corrent flow. The units for QCA theory are called QCA cells and can be realized in several way. Molecules can act as QCA cells at room temperature. In collaboration with STMicroelectronic, the group of Electrochemistry of Prof. Paolucci and the Nananotecnology laboratory from Lecce, we synthesized and studied with many techniques surface-active chiral bis-ferrocenes, conveniently designed in order to act as prototypical units for molecular computing devices. The chemistry of ferrocene has been studied thoroughly and found the opportunity to promote substitution reaction of a ferrocenyl alcohols with various nucleophiles without the aid of Lewis acid as catalysts. The only interaction between water and the two reagents is involve in the formation of a carbocation specie which is the true reactive species. We have generalized this concept to other benzyl alcohols which generating stabilized carbocations. Carbocation describe in Mayr’s scale were fondametal for our research. Finally, we used these alcohols to alkylate in enantioselective way aldehydes via organocatalysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main aims of my PhD research work have been the investigation of the redox, photophysical and electronic properties of carbon nanotubes (CNT) and their possible uses as functional substrates for the (electro)catalytic production of oxygen and as molecular connectors for Quantum-dot Molecular Automata. While for CNT many and diverse applications in electronics, in sensors and biosensors field, as a structural reinforcing in composite materials have long been proposed, the study of their properties as individual species has been for long a challenging task. CNT are in fact virtually insoluble in any solvent and, for years, most of the studies has been carried out on bulk samples (bundles). In Chapter 2 an appropriate description of carbon nanotubes is reported, about their production methods and the functionalization strategies for their solubilization. In Chapter 3 an extensive voltammetric and vis-NIR spectroelectrochemical investigation of true solutions of unfunctionalized individual single wall CNT (SWNT) is reported that permitted to determine for the first time the standard electrochemical potentials of reduction and oxidation as a function of the tube diameter of a large number of semiconducting SWNTs. We also established the Fermi energy and the exciton binding energy for individual tubes in solution and, from the linear correlation found between the potentials and the optical transition energies, one to calculate the redox potentials of SWNTs that are insufficiently abundant or absent in the samples. In Chapter 4 we report on very efficient and stable nano-structured, oxygen-evolving anodes (OEA) that were obtained by the assembly of an oxygen evolving polyoxometalate cluster, (a totally inorganic ruthenium catalyst) with a conducting bed of multiwalled carbon nanotubes (MWCNT). Here, MWCNT were effectively used as carrier of the polyoxometallate for the electrocatalytic production of oxygen and turned out to greatly increase both the efficiency and stability of the device avoiding the release of the catalysts. Our bioinspired electrode addresses the major challenge of artificial photosynthesis, i.e. efficient water oxidation, taking us closer to when we might power the planet with carbon-free fuels. In Chapter 5 a study on surface-active chiral bis-ferrocenes conveniently designed in order to act as prototypical units for molecular computing devices is reported. Preliminary electrochemical studies in liquid environment demonstrated the capability of such molecules to enter three indistinguishable oxidation states. Side chains introduction allowed to organize them in the form of self-assembled monolayers (SAM) onto a surface and to study the molecular and redox properties on solid substrates. Electrochemical studies on SAMs of these molecules confirmed their attitude to undergo fast (Nernstian) electron transfer processes generating, in the positive potential region, either the full oxidized Fc+-Fc+ or the partly oxidized Fc+-Fc species. Finally, in Chapter 6 we report on a preliminary electrochemical study of graphene solutions prepared according to an original procedure recently described in the literature. Graphene is the newly-born of carbon nanomaterials and is certainly bound to be among the most promising materials for the next nanoelectronic generation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Minor components are of particular interest due to their antioxidant and biological properties. Various classes of lipophilic minor components (plant sterols (PS) and α-tocopherol) were selected as they are widely used in the food industry. A Fast GC-MS method for PS analysis in functional dairy products was set up. The analytical performance and significant reduction of the analysis time and consumables, demonstrated that Fast GC-MS could be suitable for the PS analysis in functional dairy products. Due to their chemical structure, PS can undergo oxidation, which could be greatly impacted by matrix nature/composition and thermal treatments. The oxidative stability of PS during microwave heating was evaluated. Two different model systems (PS alone and in combination) were heated up to 30 min at 1000 W. PS degraded faster when they were alone than in presence of TAG. The extent of PS degradation depends on both heating time and the surrounding medium, which can impact the quality and safety of the food product destined to microwave heating/cooking. Many minor lipid components are included in emulsion systems and can affect the rate of lipid oxidation. The oxidative stability of oil-in-water (O/W) emulsions containing PS esters, ω-3 FA and phenolic compounds, were evaluated after a 14-day storage at room temperature. Due to their surface active character, PS could be particularly prone to oxidation when they are incorporated in emulsions, as they are more exposed to water-soluble prooxidants. Finally, some minor lipophilic components may increase oxidative stability of food systems due to their antioxidant activity. á-tocopherol partitioning and antioxidant activity was determined in the presence of excess SDS in stripped soybean O/W emulsions. Results showed that surfactant micelles could play a key role as an antioxidant carrier, by potentially increasing the accessibility of hydrophobic antioxidant to the interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last year [1], Angiolini and co-workers have synthesized and investigated methacrylic polymers bearing in the side chain the chiral cyclic (S)-3-hydroxypyrrolidine moiety interposed between the main chain and the trans-azoaromatic chromophore, substituted or not in the 4’ position by an electron-withdrawing group. In these materials, the presence of a rigid chiral moiety of one prevailing absolute configuration favours the establishment of a chiral conformation of one prevailing helical handedness, at least within chain segments of the macromolecules, which can be observed by circular dichroism (CD). The simultaneous presence of the azoaromatic and chiral functionalities allows the polymers to display both the properties typical of dissymmetric systems (optical activity, exciton splitting of dichroic absorptions), as well as the features typical of photochromic materials (photorefractivity, photoresponsiveness, NLO properties). The first part of this research was to synthesize analogue homopolymers and copolymers based on bisazoaromatic moiety and compare their properties to those of the above mentioned analogue derivatives bearing only one azoaromatic chromophore in the side chain. We focused also the attention on the effects induced on the thermal and chiroptical behaviours by the insertion of particulars achiral comonomers characterized by different side-chain mobility and grown hindrance (MMA, tert-BMA and TrMA). On the other hand carbazole containing polymers [2] have attracted much attention because of their unique features. The use of these materials in advanced micro- and nanotechnologies spreads in many different applications such as photoconductive and photorefractive polymers, electroluminescent devices, programmable optical interconnections, data storage, chemical photoreceptors, NLO, surface relief gratings, blue emitting materials and holographic memory. The second part of the work was focused on the synthesis and the characterization polymeric derivatives bearing in the side chain carbazole or phenylcarbazole moieties linked to the (S)- 2-hydroxy succinimide or the (S)-3-hydroxy pyrrolidinyl ring as chiral groups covalently linked to the main chain through ester bonds. The last objective of this research was to design, synthesize, and characterize multifunctional methacrylic homopolymers and copolymers bearing three distinct functional groups (i.e. azoaromatic, carbazole and chiral group of one single configuration) directly linked in the side chain. This polymeric derivatives could be of potential interest for several advanced application fields, such as optical storage, waveguides, chiroptical switches, chemical photoreceptors, NLO, surface relief gratings, photoconductive materials, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis reports the synthesis, and the chemical, structural and spectroscopic characterization of a series of new Rhodium and Au-Fe carbonyl clusters. Most new high-nuclearity rhodium carbonyl clusters have been obtained by redox condensation of preformed rhodium clusters reacting with a species in a different oxidation state generated in situ by mild oxidation. In particular the starting Rh carbonyl clusters is represented by the readily available [Rh7(CO)16]3- 9 compound. The oxidized species is generated in situ by reaction of the above with a stoichiometric defect of a mild oxidizing agents such as [M(H2O)x]n+ aquo complexes possessing different pKa’s and Mn+/M potentials. The experimental results are roughly in keeping with the conclusion that aquo complexes featuring E°(Mn+/M) < ca. -0.20 V do not lead to the formation of hetero-metallic Rh clusters, probably because of the inadequacy of their redox potentials relative to that of the [Rh7(CO)16]3-/2- redox couple. Only homometallic cluster s such as have been fairly selectively obtained. As a fallout of the above investigations, also a convenient and reproducible synthesis of the ill-characterized species [HnRh22(CO)35]8-n has been discovered. The ready availability of the above compound triggered both its complete spectroscopic and chemical characterization. because it is the only example of Rhodium carbonyl clusters with two interstitial metal atoms. The presence of several hydride atoms, firstly suggested by chemical evidences, has been implemented by ESI-MS and 1H-NMR, as well as new structural characterization of its tetra- and penta-anion. All these species display redox behaviour and behave as molecular capacitors. Their chemical reactivity with CO gives rise to a new series of Rh22 clusters containing a different number of carbonyl groups, which have been likewise fully characterized. Formation of hetero-metallic Rh clusters was only observed when using SnCl2H2O as oxidizing agent because. Quite all the Rh-Sn carbonyl clusters obtained have icosahedral geometry. The only previously reported example of an icosahedral Rh cluster with an interstitial atom is the [Rh12Sb(CO)27]3- trianion. They have very similar metal framework, as well as the same number of CO ligands and, consequently, cluster valence electrons (CVEs). .A first interesting aspect of the chemistry of the Rh-Sn system is that it also provides icosahedral clusters making exception to the cluster-borane analogy by showing electron counts from 166 to 171. As a result, the most electron-short species, namely [Rh12Sn(CO)25]4- displays redox propensity, even if disfavoured by the relatively high free negative charge of the starting anion and, moreover, behaves as a chloride scavenger. The presence of these bulky interstitial atoms results in the metal framework adopting structures different from a close-packed metal lattice and, above all, imparts a notable stability to the resulting cluster. An organometallic approach to a new kind of molecular ligand-stabilized gold nanoparticles, in which Fe(CO)x (x = 3,4) moieties protect and stabilize the gold kernel has also been undertaken. As a result, the new clusters [Au21{Fe(CO)4}10]5-, [Au22{Fe(CO)4}12]6-, Au28{Fe(CO)3}4{Fe(CO)4}10]8- and [Au34{Fe(CO)3}6{Fe(CO)4}8]6- have been isolated and characterized. As suggested by concepts of isolobal analogies, the Fe(CO)4 molecular fragment may display the same ligand capability of thiolates and go beyond. Indeed, the above clusters bring structural resemblance to the structurally characterized gold thiolates by showing Fe-Au-Fe, rather than S-Au-S, staple motives. Staple motives, the oxidation state of surface gold atoms and the energy of Au atomic orbitals are likely to concur in delaying the insulator-to-metal transition as the nuclearity of gold thiolates increases, relative to the more compact transition-metal carbonyl clusters. Finally, a few previously reported Au-Fe carbonyl clusters have been used as precursors in the preparation of supported gold catalysts. The catalysts obtained are active for toluene oxidation and the catalytic activity depends on the Fe/Au cluster loading over TiO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of agents targeting EGFR represents a new frontier in colon cancer therapy. Among these, monoclonal antibodies (mAbs) and EGFR tyrosine kinase inhibitors (TKIs) seemed to be the most promising. However they have demonstrated low utility in therapy, the former being effective at toxic doses, the latter resulting inefficient in colon cancer. This thesis work presents studies on a new EGFR inhibitor, FR18, a molecule containing the same naphtoquinone core as shikonin, an agent with great anti-tumor potential. In HT-29, a human colon carcinoma cell line, flow cytometry, immunoprecipitation, and Western blot analysis, confocal spectral microscopy have demonstrated that FR18 is active at concentrations as low as 10 nM, inhibits EGF binding to EGFR while leaving unperturbed the receptor kinase activity. At concentration ranging from 30 nM to 5 μM, it activates apoptosis. FR18 seems therefore to have possible therapeutic applications in colon cancer. In addition, surface plasmon resonance (SPR) investigation of the direct EGF/EGFR complex interaction using different experimental approaches is presented. A commercially available purified EGFR was immobilised by amine coupling chemistry on SPR sensor chip and its interaction to EGF resulted to have a KD = 368 ± 0.65 nM. SPR technology allows the study of biomolecular interactions in real-time and label-free with a high degree of sensitivity and specificity and thus represents an important tool for drug discovery studies. On the other hand EGF/EGFR complex interaction represents a challenging but important system that can lead to significant general knowledge about receptor-ligand interactions, and the design of new drugs intended to interfere with EGFR binding activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Northern Apennines (NA) chain is the expression of the active plate margin between Europe and Adria. Given the low convergence rates and the moderate seismic activity, ambiguities still occur in defining a seismotectonic framework and many different scenarios have been proposed for the mountain front evolution. Differently from older models that indicate the mountain front as an active thrust at the surface, a recently proposed scenario describes the latter as the frontal limb of a long-wavelength fold (> 150 km) formed by a thrust fault tipped around 17 km at depth, and considered as the active subduction boundary. East of Bologna, this frontal limb is remarkably very straight and its surface is riddled with small, but pervasive high- angle normal faults. However, west of Bologna, some recesses are visible along strike of the mountain front: these perturbations seem due to the presence of shorter wavelength (15 to 25 km along strike) structures showing both NE and NW-vergence. The Pleistocene activity of these structures was already suggested, but not quantitative reconstructions are available in literature. This research investigates the tectonic geomorphology of the NA mountain front with the specific aim to quantify active deformations and infer possible deep causes of both short- and long-wavelength structures. This study documents the presence of a network of active extensional faults, in the foothills south and east of Bologna. For these structures, the strain rate has been measured to find a constant throw-to-length relationship and the slip rates have been compared with measured rates of erosion. Fluvial geomorphology and quantitative analysis of the topography document in detail the active tectonics of two growing domal structures (Castelvetro - Vignola foothills and the Ghiardo plateau) embedded in the mountain front west of Bologna. Here, tilting and river incision rates (interpreted as that long-term uplift rates) have been measured respectively at the mountain front and in the Enza and Panaro valleys, using a well defined stratigraphy of Pleistocene to Holocene river terraces and alluvial fan deposits as growth strata, and seismic reflection profiles relationships. The geometry and uplift rates of the anticlines constrain a simple trishear fault propagation folding model that inverts for blind thrust ramp depth, dip, and slip. Topographic swath profiles and the steepness index of river longitudinal profiles that traverse the anti- clines are consistent with stratigraphy, structures, aquifer geometry, and seismic reflection profiles. Available focal mechanisms of earthquakes with magnitude between Mw 4.1 to 5.4, obtained from a dataset of the instrumental seismicity for the last 30 years, evidence a clear vertical separation at around 15 km between shallow extensional and deeper compressional hypocenters along the mountain front and adjacent foothills. In summary, the studied anticlines appear to grow at rates slower than the growing rate of the longer- wavelength structure that defines the mountain front of the NA. The domal structures show evidences of NW-verging deformation and reactivations of older (late Neogene) thrusts. The reconstructed river incision rates together with rates coming from several other rivers along a 250 km wide stretch of the NA mountain front and recently available in the literature, all indicate a general increase from Middle to Late Pleistocene. This suggests focusing of deformation along a deep structure, as confirmed by the deep compressional seismicity. The maximum rate is however not constant along the mountain front, but varies from 0.2 mm/yr in the west to more than 2.2 mm/yr in the eastern sector, suggesting a similar (eastward-increasing) trend of the apenninic subduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is based on the integration of traditional and innovative approaches aimed at improving the normal faults seimogenic identification and characterization, focusing mainly on slip-rate estimate as a measure of the fault activity. The L’Aquila Mw 6.3 April 6, 2009 earthquake causative fault, namely the Paganica - San Demetrio fault system (PSDFS), was used as a test site. We developed a multidisciplinary and scale‐based strategy consisting of paleoseismological investigations, detailed geomorphological and geological field studies, as well as shallow geophysical imaging and an innovative application of physical properties measurements. We produced a detailed geomorphological and geological map of the PSDFS, defining its tectonic style, arrangement, kinematics, extent, geometry and internal complexities. The PSDFS is a 19 km-long tectonic structure, characterized by a complex structural setting and arranged in two main sectors: the Paganica sector to the NW, characterized by a narrow deformation zone, and the San Demetrio sector to SE, where the strain is accommodated by several tectonic structures, exhuming and dissecting a wide Quaternary basin, suggesting the occurrence of strain migration through time. The integration of all the fault displacement data and age constraints (radiocarbon dating, optically stimulated luminescence (OSL) and tephrochronology) helped in calculating an average Quaternary slip-rate representative for the PSDFS of 0.27 - 0.48 mm/yr. On the basis of its length (ca. 20 km) and slip per event (up to 0.8 m) we also estimated a max expected Magnitude of 6.3-6.8 for this fault. All these topics have a significant implication in terms of surface faulting hazard in the area and may contribute also to the understanding of the PSDFS seismic behavior and of the local seismic hazard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been proved that naphthalene diimide (NDI) derivatives display anticancer properties as intercalators and G-quadruplex-binding ligands, leading to DNA damage, senescence and down-regulation of oncogene expression. This thesis deals with the design and synthesis of disubstituted and tetrasubstituted NDI derivatives endowed with anticancer activity, interacting with DNA together with other targets implicated in cancer development. Disubstituted NDI compounds have been designed with the aim to provide potential multitarget directed ligands (MTDLs), in order to create molecules able to simultaneously interact with some of the different targets involved in this pathology. The most active compound, displayed antiproliferative activity in submicromolar range, especially against colon and prostate cancer cell lines, the ability to bind duplex and quadruplex DNA, to inhibit Taq polymerase and telomerase, to trigger caspase activation by a possible oxidative mechanism, to downregulate ERK 2 protein and to inhibit ERKs phosphorylation, without acting directly on microtubules and tubuline. Tetrasubstituted NDI compounds have been designed as G-quadruplex-binding ligands endowed with anticancer activity. In order to improve the cellular uptake of the lead compound, the N-methylpiperazine moiety have been replaced with different aromatic systems and methoxypropyl groups. The most interesting compound was 1d, which was able to interact with the G-quadruplexes both telomeric and in HSP90 promoter region, and it has been co-crystallized with the human telomeric G-quadruplex, to directly verify its ability to bind this kind of structure, and also to investigate its binding mode. All the morpholino substituted compounds show antiproliferative activity in submicromolar values mainly in pancreatic and lung cancer cell lines, and they show an improved biological profile in comparison with that of the lead compound. In conclusion, both these studies, may represent a promising starting point for the development of new interesting molecules useful for the treatment of cancer, underlining the versatility of the NDI scaffold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The post genomic era, set the challenge to develop drugs that target an ever-growing list of proteins associated with diseases. However, an increase in the number of drugs approved every year is nowadays still not observed. To overcome this gap, innovative approaches should be applied in drug discovery for target validation, and at the same time organic synthetic chemistry has to find new fruitful strategies to obtain biologically active small molecules not only as therapeutic agents, but also as diagnostic tools to identify possible cellular targets. In this context, in view of the multifactorial mechanistic nature of cancer, new chimeric molecules, which can be either antitumor lead candidates, or valuable chemical tools to study molecular pathways in cancer cells, were developed using a multitarget-directed drug design strategy. According to this approach, the desired hybrid compounds were obtained by combining in a single chemical entity SAHA analogues, targeting histone deacetylases (HDACs), with substituted stilbene or terphenyl derivatives able to block cell cycle, to induce apoptosis and cell differentiation and with Sorafenib derivative, a multikinase inhibitor. The new chimeric derivatives were characterized with respect to their cytotoxic activity and their effects on cell cycle progression on leukemia Bcr-Abl-expressing K562 cell lines, as well as their HDACs inhibition. Preliminary results confirmed that one of the hybrid compounds has the desired chimeric profile. A distinct project was developed in the laboratory of Dr Spring, regarding the synthesis of a diversity-oriented synthesis (DOS) library of macrocyclic peptidomimetics. From a biological point of view, this class of molecules is extremely interesting but underrepresented in drug discovery due to the poor synthetic accessibility. Therefore it represents a valid challenge for DOS to take on. A build/couple/pair (B/C/P) approach provided, in an efficient manner and in few steps, the structural diversity and complexity required for such compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decades noble metal nanoparticles (NPs) arose as one of the most powerful tools for applications in nanomedicine field and cancer treatment. Glioblastoma multiforme (GBM), in particular, is one of the most aggressive malignant brain tumors that nowadays still presents a dramatic scenario concerning median survival. Gold nanorods (GNRs) and silver nanoparticles (AgNPs) could find applications such as diagnostic imaging, hyperthermia and glioblastoma therapy. During these three years, both GNRs and AgNPs were synthesized with the “salt reduction” method and, through a novel double phase transfer process, using specifically designed thiol-based ligands, lipophilic GNRs and AgNPs were obtained and separately entrapped into biocompatible and biodegradable PEG-based polymeric nanoparticles (PNPs) suitable for drug delivery within the body. Moreover, a synergistic effect of AgNPs with the Alisertib drug, were investigated thanks to the simultaneous entrapment of these two moieties into PNPs. In addition, Chlorotoxin (Cltx), a peptide that specifically recognize brain cancer cells, was conjugated onto the external surface of PNPs. The so-obtained novel nanosystems were evaluated for in vitro and in vivo applications against glioblastoma multiforme. In particular, for GNRs-PNPs, their safety, their suitability as optoacoustic contrast agents, their selective laser-induced cells death and finally, a high tumor retention were all demonstrated. Concerning AgNPs-PNPs, promising tumor toxicity and a strong synergistic effect with Alisertib was observed (IC50 10 nM), as well as good in vivo biodistribution, high tumor uptake and significative tumor reduction in tumor bearing mice. Finally, the two nanostructures were linked together, through an organic framework, exploiting the click chemistry azido-alkyne Huisgen cycloaddition, between two ligands previously attached to the NPs surface; this multifunctional complex nanosystem was successfully entrapped into PNPs with nanoparticles’ properties maintenance, obtaining in this way a powerful and promising tool for cancer fight and defeat.