10 resultados para Supported Palladium

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Section 1 is focused on the bis-alkoxycarbonylation reaction of olefins, catalyzed by aryl α-diimine/Pd(II) complexes, for the synthesis of succinic acid ester derivatives, important compounds in many industrial fields. The opening chapter (Chapter 1) of this thesis presents an overview of the basic chemistry of organopalladium compounds and carbonylation reactions, focusing on oxidative bis-alkoxycarbonylation processes. In Chapter 2 the results obtained in the bis-alkoxycarbonylation of 1,2-disubstituted olefins are reported. The reaction proceeds under very mild reaction conditions, using an aryl α-diimine/Pd(II) catalyst and p-benzoquinone as oxidant, in the presence of a suitable alcohol. This process proved to be very efficient, selective and diastereospecific and various 2,3-disubstituted succinic esters have been obtained in high yields. In Chapter 3 the first bis-alkoxycarbonylation reaction of acrylic esters and acrylic amides, leading to the synthesis of 2-alkoxycarbonyl and 2-carbamoyl succinates respectively, is reported. Remarkably, the utilized aryl α-diimine/Pd(II) catalyst is able to promote the carbonylation of both the β- and the generally non-reactive α- positions of these alkenes. The proposed catalytic cycle is supported by DFT calculations. Section 2 is mainly focused on the Ni-catalyzed difunctionalization of unactivated alkenes tethered to unstabilized ketones. This reaction allows for a wide range of pharmaceutically useful cyclic architectures to be obtained. Chapter 4 consists of an introduction to the difunctionalization reactions of unactivated olefins. In particular, intramolecular reactions will be discussed in detail. In Chapter 5 the results obtained from the Ni-catalyzed difunctionalization of unactivated alkenes tethered to unstabilized ketones are reported. The reaction proceeds through the formation of a zinc-enolate compound, followed by a cyclization/cross-coupling reaction, which takes place in the presence of a phosphine/Ni(II) complex and an (hetero)aryl electrophile, leading to different cyclic and bicyilc architectures. In Chapter 6, preliminary results concerning the anionic cyclization of zinc enolates tethered to unactivated alkenes are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following Ph.D work was mainly focused on catalysis, as a key technology, to achieve the objectives of sustainable (green) chemistry. After introducing the concepts of sustainable (green) chemistry and an assessment of new sustainable chemical technologies, the relationship between catalysis and sustainable (green) chemistry was briefly discussed and illustrated via an analysis of some selected and relevant examples. Afterwards, as a continuation of the ongoing interest in Dr. Marco Bandini’s group on organometallic and organocatalytic processes, I addressed my efforts to the design and development of novel catalytic green methodologies for the synthesis of enantiomerically enriched molecules. In the first two projects the attention was focused on the employment of solid supports to carry out reactions that still remain a prerogative of omogeneous catalysis. Firstly, particular emphasis was addressed to the discovery of catalytic enantioselective variants of nitroaldol condensation (commonly termed Henry reaction), using a complex consisting in a polyethylene supported diamino thiopene (DATx) ligands and copper as active species. In the second project, a new class of electrochemically modified surfaces with DATx palladium complexes was presented. The DATx-graphite system proved to be efficient in promoting the Suzuki reaction. Moreover, in collaboration with Prof. Wolf at the University of British Columbia (Vancouver), cyclic voltammetry studies were reported. This study disclosed new opportunities for carbon–carbon forming processes by using heterogeneous, electrodeposited catalyst films. A straightforward metal-free catalysis allowed the exploration around the world of organocatalysis. In fact, three different and novel methodologies, using Cinchona, Guanidine and Phosphine derivatives, were envisioned in the three following projects. An interesting variant of nitroaldol condensation with simple trifluoromethyl ketones and also their application in a non-conventional activation of indolyl cores by Friedel-Crafts-functionalization, led to two novel synthetic protocols. These approaches allowed the preparation of synthetically useful trifluoromethyl derivatives bearing quaternary stereocenters. Lastly, in the sixth project the first γ-alkylation of allenoates with conjugated carbonyl compounds was envisioned. In the last part of this Ph.D thesis bases on an extra-ordinary collaboration with Prof. Balzani and Prof. Gigli, I was involved in the synthesis and characterization of a new type of heteroleptic cyclometaled-Ir(III) complexes, bearing bis-oxazolines (BOXs) as ancillary ligands. The new heteroleptic complexes were fully characterized and in order to examine the electroluminescent properties of FIrBOX(CH2), an Organic Light Emitting Device was realized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In first part we have developed a simple regiocontrolled protocol of 1,3-DC to get ring fused pyrazole derivatives. These pyrazole derivatives were synthesized using 1,3-DC between nitrile imine and various dipolarophiles such as alkynes, cyclic α,β-ketones, lactones, thiocatones and lactums. The reactions were found to be highly regiospecific. In second part we have discussed about helicene, its properties, synthesis and applications as asymmetric catalyst.Due to inherent chirality, herein we have made an attempt to synthesize the helicene-thiourea based catalyst for asymmetric catalysis. The synthesis involved formation of two key intermediates viz, bromo-phenanthrene 5 and a vinyl-naphthalene 10. The coupling of these two intermediates leads to formation of hexahelicene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the hydrodechlorination of CF3OCFClCF2Cl to produce unsaturated CF3OCF=CF2 was studied over a series of supported metal catalysts. Currently this molecule is produced from the precursor CF3OCFClCF2Cl by dechlorination with zinc powder. An important cost on the economic and environmental balance is represents by the large amount of ZnCl2 produced and to be disposed of. A new approach, based on gas-phase hydrodechlorination over supported catalysts can lead to a new sustainable process. During the feasibility step of this project, substantially two kind of materials were studied: metals supported over activated carbon and Pd/Cu species supported over MCM-41 mesoporous silica. Observed catalytic performances were strongly dependent on the metal and support used. All carbon-supported Ru, Pd, and bimetallic catalysts are fairly active and yielded the target product CF3OCF=CF2, the higher selectivity being obtained with ruthenium- and palladium-based materials. Nevertheless, Ru-based catalysts showed poor stability and this deactivation may be attributed to the deposition of chlorinated organic species blocking the active sites. On the other hand, palladium-containing catalysts showed high stability. Ru/Pd and Pd/Cu bimetallic catalysts exhibited long-term selectivity and stability, highlighting the possibility for these materials to be employed in the CF3OCF=CF2 production process. During the second part of this thesis, a series of bimetallic meso-structured Pd/Cu MCM-41 catalysts were studies to overcome possible mass transfer limitations. The materials were obtained by different synthesis methods. The incorporation of Pd and Cu during MCM-41 synthesis, did not destroy the typical hexagonal array and ordered pore system of MCM-41. However, the calcination for the removal of the template provoked significant segregation of oxides. The impregnation leads to pore-occlusion and formation of Cu particles and large bimetallic PdCu species. Larger metal particles leads to lower CF3OCFClCF2Cl conversion, while the monometallic particles can decrease the selectivity to CF3OCF=CF2, fostering the dehalogenation to CF3OCH=CF2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this work was the synthesis and applications of functionalized-silica-supported gold nanoparticles. The silica-anchored functionalities employed, e.g. amine, alkynyl carbamate and sulfide moieties, possess a notable affinity with gold, so that they could be able to capture the gold precursor, to spontaneously reduce it (possibly at room temperature), and to stabilize the resulting gold nanoparticles. These new materials, potentially suitable for heterogeneous catalysis applications, could represent a breakthrough among the “green” synthesis of supported gold nanoparticles, since they would circumvent the addition of extra reducing agent and stabilizers, also allowing concomitant absorption of the active catalyst particles on the support immediately after spontaneous formation of gold nanoparticles. In chapter 4 of this thesis is also presented the work developed during a seven-months Marco Polo fellowship stay at the University of Lille (France), regarding nanoparticles nucleation and growth inside a microfluidic system and the study of the corresponding mechanism by in situ XANES spectroscopy. Finally, studies regarding the reparation and reactivity of gold decorated nanodiamonds are also described. Various methods of characterization have been used, such as ultraviolet-visible spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), X-ray Fluorescence (XRF), Field Emission Gun Scanning Electron Microscopy (SEM-FEG), X-ray Photoionization (XPS), X ray Absorption Spectroscopy (XAS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using metal supported catalysts. Catalysts were prepared from the immobilisation of preformed monometallic (Au, Pd) and bimetallic (AuCu, AuPd) nanoparticles on commercial oxides (TiO2, CeO2). Au-TiO2 catalyst was found to be very active for HMF oxidation; however, this system deactivated very fast. For this reason, we prepared bimetallic gold-copper nanoparticles and an increase in the catalytic activity was observed together with an increase in catalyst stability. In order to optimise the interaction of the metal active phase with the support, Au and AuCu nanoparticles were supported onto CeO2. Au-CeO2 catalyst was found to be more active than the bimetallic one, leading to the conclusion that in this case the most important feature is the interaction between gold and the support. Catalyst pre-treatments (calcination and washing) were carried out to maximise the contact between the metal and the oxide and an increase in the FDCA production could be observed. The presence of ceria defective sites was crucial for FDCA formation. Mesoporous cerium oxide was synthesised with the hard template method and was used as support for Au nanoparticles to promote the catalytic activity. In order to study the role of active phase in HMF oxidation, PdAu nanoparticles were supported onto TiO2. Au and Pd monometallic catalysts were very active in the formation of HMFCA (5-hydroxymethyl-2-furan carboxylic acid), but Pd was not able to convert it, leading to a low FDCA yield. The calcination of PdAu catalysts led to Pd segregation on the particles surface, which changed the reaction pathway and included an important contribution of the Cannizzaro reaction. PVP protected PdAu nanoparticles, synthesised with different morphologies (core-shell and alloyed structure), confirmed the presence of a different reaction mechanism when the metal surface composition changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrocatalysts play a significant role in the processes of electrochemical energy conversion. This thesis focuses on the preparation of carbon-supported nanomaterials and their application as electrocatalysts for alkaline water electrocatalysis and fuel cell. A general synthetic route was developed, i.e., species intercalate into carbon layers of graphite forming graphite intercalation compound, followed by dispersion producing graphenide solution, which then as reduction agent reacts with different metal sources generating the final materials. The first metal precursor used was non-noble metal iron salt, which generated iron (oxide) nanoparticles finely dispersed on carbon layers in the final composite materials. Meanwhile, graphite starting materials differing in carbon layer size were utilized, which would diversify corresponding graphenide solutions, and further produce various nanomaterials. The characterization results showed that iron (oxide) nanoparticles varying in size were obtained, and the size was determined by the starting graphite material. It was found that they were electrocatalytically active for oxygen reactions. In particular, the one with small iron (oxide) nanoparticles showed excellent electrocatalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Afterwards, the metal precursor was tuned from non-noble metal salt to noble metal salt. It was confirmed that carbon-supported Rh, Pt, and RhPt (oxide) nanoparticle composite materials were also successfully obtained from the reaction between graphenide solution and corresponding noble metal precursor. The electrochemical measurements showed that the prepared noble metal-based nanomaterials were quite effective for hydrogen evolution reaction (HER) electrocatalysis, and the Rh sample could also display excellent electrocatalytic property towards OER. Moreover, by this synthetic approach carbon-supported noble metal Pt and non-noble metal nickel (Ni) composite material was also prepared. Therefore, the utilization efficiency of noble metal could be improved. The prepared NiPt sample displayed a property close to benchmark HER electrocatalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of the global warming. In this context, the transportation sector plays a vital role, since it is responsible for a large part of carbon dioxide production. In order to address these issues, the present thesis deals with the development of advanced control strategies for the energy efficiency optimization of plug-in hybrid electric vehicles (PHEVs), supported by the prediction of future working conditions of the powertrain. In particular, a Dynamic Programming algorithm has been developed for the combined optimization of vehicle energy and battery thermal management. At this aim, the battery temperature and the battery cooling circuit control signal have been considered as an additional state and control variables, respectively. Moreover, an adaptive equivalent consumption minimization strategy (A-ECMS) has been modified to handle zero-emission zones, where engine propulsion is not allowed. Navigation data represent an essential element in the achievement of these tasks. With this aim, a novel simulation and testing environment has been developed during the PhD research activity, as an effective tool to retrieve routing information from map service providers via vehicle-to-everything connectivity. Comparisons between the developed and the reference strategies are made, as well, in order to assess their impact on the vehicle energy consumption. All the activities presented in this doctoral dissertation have been carried out at the Green Mobility Research Lab} (GMRL), a research center resulting from the partnership between the University of Bologna and FEV Italia s.r.l., which represents the industrial partner of the research project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal catalyzed cross-coupling reactions represent among the most versatile and useful tools in organic synthesis for the carbon-carbon (C-C) bond formation and have a prominent role in both the academic and pharmaceutical segments. Among them, palladium catalyzed cross-coupling reactions are currently the most versatile. In this thesis, the applications, impact and development of green palladium cross-coupling reactions are discussed. Specifically, we discuss the translation of the Twelve Principles of Green Chemistry and their applications in pharmaceutical organometallic chemistry to stimulate the development of cost-effective and sustainable catalytic processes for the synthesis of active pharmaceutical ingredients (API). The Heck-Cassar-Sonogashira (HCS) and the Suzuki-Miyaura (SM) protocols, using HEP/H2O as green mixture and sulfonated phosphine ligands, allowed to recycle and recover the catalyst, always guaranteeing high yields and fast conversion under mild conditions, with aryl iodides, bromides, triflates and chlorides. No catalyst leakage or metal contamination of the final product were observed during the HCS and SM reactions, respecting the very low limits for metal impurities in medicines established by the International Conference of Harmonization Guidelines Q3D (ICH Q3D). In addition, a deep understanding of the reaction mechanism is very important if the final target is to develop efficient protocols that can be applied at industrial level. Experimental and theoretical studies pointed out the presence of two catalytic cycles depending on the counterion, shedding light on the role of base in catalyst reduction and acetylene coordination in the HCS coupling. Finally, the development of a cross-coupling reaction to form aryldifluoronitriles in the presence of copper is discussed, highlighting the importance of inserting fluorine atoms within biological structures and the use of readily available metals such as copper as an alternative to palladium.