3 resultados para Supply network mapping

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'indagine condotta, avvalendosi del paradigma della social network analysis, offre una descrizione delle reti di supporto personale e del capitale sociale di un campione di 80 italiani ex post un trattamento terapeutico residenziale di lungo termine per problemi di tossicodipendenza. Dopo aver identificato i profili delle reti di supporto sociale degli intervistati, si è proceduto, in primis, alla misurazione e comparazione delle ego-centered support networks tra soggetti drug free e ricaduti e, successivamente, all'investigazione delle caratteristiche delle reti e delle forme di capitale sociale – closure e brokerage – che contribuiscono al mantenimento dell'astinenza o al rischio di ricaduta nel post-trattamento. Fattori soggettivi, come la discriminazione pubblica percepita e l'attitudine al lavoro, sono stati inoltre esplorati al fine di investigare la loro correlazione con la condotta di reiterazione nell'uso di sostanze. Dai risultati dello studio emerge che un più basso rischio di ricaduta è positivamente associato ad una maggiore attitudine al lavoro, ad una minore percezione di discriminazione da parte della società, all'avere membri di supporto con un più alto status socio-economico e che mobilitano risorse reputazionali e, infine, all'avere reti più eterogenee nell'occupazione e caratterizzate da più elevati livelli di reciprocità. Inoltre, il capitale sociale di tipo brokerage contribuisce al mantenimento dell'astinenza in quanto garantisce l'accesso del soggetto ad informazioni meno omogenee e la sua esposizione a opportunità più numerose e differenziate. I risultati dello studio, pertanto, dimostrano l'importante ruolo delle personal support networks nel prevenire o ridurre il rischio di ricaduta nel post-trattamento, in linea con precedenti ricerche che suggeriscono la loro incorporazione nei programmi terapeutici per tossicodipendenti.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decomposition based approaches are recalled from primal and dual point of view. The possibility of building partially disaggregated reduced master problems is investigated. This extends the idea of aggregated-versus-disaggregated formulation to a gradual choice of alternative level of aggregation. Partial aggregation is applied to the linear multicommodity minimum cost flow problem. The possibility of having only partially aggregated bundles opens a wide range of alternatives with different trade-offs between the number of iterations and the required computation for solving it. This trade-off is explored for several sets of instances and the results are compared with the ones obtained by directly solving the natural node-arc formulation. An iterative solution process to the route assignment problem is proposed, based on the well-known Frank Wolfe algorithm. In order to provide a first feasible solution to the Frank Wolfe algorithm, a linear multicommodity min-cost flow problem is solved to optimality by using the decomposition techniques mentioned above. Solutions of this problem are useful for network orientation and design, especially in relation with public transportation systems as the Personal Rapid Transit. A single-commodity robust network design problem is addressed. In this, an undirected graph with edge costs is given together with a discrete set of balance matrices, representing different supply/demand scenarios. The goal is to determine the minimum cost installation of capacities on the edges such that the flow exchange is feasible for every scenario. A set of new instances that are computationally hard for the natural flow formulation are solved by means of a new heuristic algorithm. Finally, an efficient decomposition-based heuristic approach for a large scale stochastic unit commitment problem is presented. The addressed real-world stochastic problem employs at its core a deterministic unit commitment planning model developed by the California Independent System Operator (ISO).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ventral premotor cortex (PMv) is believed to play a pivotal role in a multitude of visuomotor behaviors, such as sensory-guided goal-directed visuomotor transformations, arbitrary visuomotor mapping, and hyper-learnt visuomotor associations underlying automatic imitative tendencies. All these functions are likely carried out through the copious projections connecting PMv to the primary motor cortex (M1). Yet, causal evidence investigating the functional relevance of the PMv-M1 network remains elusive and scarce. In the studies reported in this thesis we addressed this issue using a transcranial magnetic stimulation (TMS) protocol called cortico-cortical paired associative stimulation (ccPAS), which relies on multisite stimulation to induce Hebbian spike-timing dependent plasticity (STDP) by repeatedly stimulating the pathway connecting two target areas to manipulate their connectivity. Firstly, we show that ccPAS protocols informed by both short- and long-latency PMv-M1 interactions effectively modulate connectivity between the two nodes. Then, by pre-activating the network to apply ccPAS in a state-dependent manner, we were able to selectively target specific functional visuo-motor pathways, demonstrating the relevance of PMv-M1 connectivity to arbitrary visuomotor mapping. Subsequently, we addressed the PMv-to-M1 role in automatic imitation, and demonstrated that its connectivity manipulation has a corresponding impact on automatic imitative tendencies. Finally, by combining dual-coil TMS connectivity assessments and ccPAS in young and elderly individuals, we traced effective connectivity of premotor-motor networks and tested their plasticity and relevance to manual dexterity and force in healthy ageing. Our findings provide unprecedent causal evidence of the functional role of the PMv-to-M1 network in young and elderly individuals. The studies presented in this thesis suggest that ccPAS can effectively modulate the strength of connectivity between targeted areas, and coherently manipulate a networks’ behavioral output. Results open new research prospects into the causal role of cortico-cortical connectivity, and provide necessary information to the development of clinical interventions based on connectivity manipulation.