2 resultados para Subspaces of omega(2)(1)

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: To evaluate the early response to treatment to an antiangiogenetic drug (sorafenib) in a heterotopic murine model of hepatocellular carcinoma (HCC) using ultrasonographic molecular imaging. Material and Methods: the xenographt model was established injecting a suspension of HuH7 cells subcutaneously in 19 nude mice. When tumors reached a mean diameter of 5-10 mm, they were divided in two groups (treatment and vehicle). The treatment group received sorafenib (62 mg/kg) by daily oral gavage for 14 days. Molecular imaging was performed using contrast enhanced ultrasound (CEUS), by injecting into the mouse venous circulation a suspension of VEGFR-2 targeted microbubbles (BR55, kind gift of Bracco Swiss, Geneve, Switzerland). Video clips were acquired for 6 minutes, then microbubbles (MBs) were destroyed by a high mechanical index (MI) impulse, and another minute was recorded to evaluate residual circulating MBs. The US protocol was repeated at day 0,+2,+4,+7, and +14 from the beginning of treatment administration. Video clips were analyzed using a dedicated software (Sonotumor, Bracco Swiss) to quantify the signal of the contrast agent. Time/intensity curves were obtained and the difference of the mean MBs signal before and after high MI impulse (Differential Targeted Enhancement-dTE) was calculated. dTE represents a numeric value in arbitrary units proportional to the amount of bound MBs. At day +14 mice were euthanized and the tumors analyzed for VEGFR-2, pERK, and CD31 tissue levels using western blot analysis. Results: dTE values decreased from day 0 to day +14 both in treatment and vehicle groups, and they were statistically higher in vehicle group than in treatment group at day +2, at day +7, and at day +14. With respect to the degree of tumor volume increase, measured as growth percentage delta (GPD), treatment group was divided in two sub-groups, non-responders (GPD>350%), and responders (GPD<200%). In the same way vehicle group was divided in slow growth group (GPD<400%), and fast growth group (GPD>900%). dTE values at day 0 (immediately before treatment start) were higher in non-responders than in responders group, with statistical difference at day 2. While dTE values were higher in the fast growth group than in the slow growth group only at day 0. A significant positive correlation was found between VEGFR-2 tissue levels and dTE values, confirming that level of BR55 tissue enhancement reflects the amount of tissue VEGF receptor. Conclusions: the present findings show that, at least in murine experimental models, CEUS with BR55 is feasable and appears to be a useful tool in the prediction of tumor growth and response to sorafenib treatment in xenograft HCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research work has dealt with the study of new catalytic processes for the synthesis of fine chemicals belonging to the class of phenolics, namely 2-phenoxyethanol and hydroxytyrosol. The two synthetic procedures investigated have the advantages of being much closer to the Green Chemistry principles than those currently used industrially. In both cases, the challenge was that of finding catalysts and methods which led to the production of less waste, and used less hazardous chemicals, safer solvents, and reusable heterogeneous catalysts. In the case of 2-phenoxyethanol, the process investigated involves the use of ethylene carbonate (EC) as the reactant for phenol O-hydroxyethylation, in place of ethylene oxide. Besides being a safer reactant, the major advantage of using EC in the new synthesis is the better selectivity to the desired product achieved. Moreover, the solid catalyst based on Na-mordenite was fully recyclable. The reaction mechanism and the effect of the Si/Al ratio in the mordenite were investigated. In the case of hydroxytyrosol, which is one of the most powerful natural antioxidants, a new synthetic procedure was investigated; in fact, the method currently employed, the hydrolysis of oleuropein, an ester extracted from the waste water processing of the olive, makes use of large amounts of organic solvents (hexane, ethyl acetate), and involves several expensive steps of purification. The synthesis procedure set up involves first the reaction between catechol and 2,2-dimethoxyacetaldehyde, followed by the one-pot reduction of the intermediate to give the desired product. Both steps were optimized, in terms of catalyst used, and of reaction conditions, that allowed to reach ca 70% yield in each step. The reaction mechanism was investigated and elucidated. During a 3-month period spent at the University of Valencia (with Prof. A. Corma’s group), a process for the production of diesel additives (2,5-bis(propoxymethyl)furan) from fructose has been investigated.