5 resultados para Subjective-probability
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The theory of the 3D multipole probability tomography method (3D GPT) to image source poles, dipoles, quadrupoles and octopoles, of a geophysical vector or scalar field dataset is developed. A geophysical dataset is assumed to be the response of an aggregation of poles, dipoles, quadrupoles and octopoles. These physical sources are used to reconstruct without a priori assumptions the most probable position and shape of the true geophysical buried sources, by determining the location of their centres and critical points of their boundaries, as corners, wedges and vertices. This theory, then, is adapted to the geoelectrical, gravity and self potential methods. A few synthetic examples using simple geometries and three field examples are discussed in order to demonstrate the notably enhanced resolution power of the new approach. At first, the application to a field example related to a dipole–dipole geoelectrical survey carried out in the archaeological park of Pompei is presented. The survey was finalised to recognize remains of the ancient Roman urban network including roads, squares and buildings, which were buried under the thick pyroclastic cover fallen during the 79 AD Vesuvius eruption. The revealed anomaly structures are ascribed to wellpreserved remnants of some aligned walls of Roman edifices, buried and partially destroyed by the 79 AD Vesuvius pyroclastic fall. Then, a field example related to a gravity survey carried out in the volcanic area of Mount Etna (Sicily, Italy) is presented, aimed at imaging as accurately as possible the differential mass density structure within the first few km of depth inside the volcanic apparatus. An assemblage of vertical prismatic blocks appears to be the most probable gravity model of the Etna apparatus within the first 5 km of depth below sea level. Finally, an experimental SP dataset collected in the Mt. Somma-Vesuvius volcanic district (Naples, Italy) is elaborated in order to define location and shape of the sources of two SP anomalies of opposite sign detected in the northwestern sector of the surveyed area. The modelled sources are interpreted as the polarization state induced by an intense hydrothermal convective flow mechanism within the volcanic apparatus, from the free surface down to about 3 km of depth b.s.l..
Resumo:
The thesis studies the economic and financial conditions of Italian households, by using microeconomic data of the Survey on Household Income and Wealth (SHIW) over the period 1998-2006. It develops along two lines of enquiry. First it studies the determinants of households holdings of assets and liabilities and estimates their correlation degree. After a review of the literature, it estimates two non-linear multivariate models on the interactions between assets and liabilities with repeated cross-sections. Second, it analyses households financial difficulties. It defines a quantitative measure of financial distress and tests, by means of non-linear dynamic probit models, whether the probability of experiencing financial difficulties is persistent over time. Chapter 1 provides a critical review of the theoretical and empirical literature on the estimation of assets and liabilities holdings, on their interactions and on households net wealth. The review stresses the fact that a large part of the literature explain households debt holdings as a function, among others, of net wealth, an assumption that runs into possible endogeneity problems. Chapter 2 defines two non-linear multivariate models to study the interactions between assets and liabilities held by Italian households. Estimation refers to a pooling of cross-sections of SHIW. The first model is a bivariate tobit that estimates factors affecting assets and liabilities and their degree of correlation with results coherent with theoretical expectations. To tackle the presence of non normality and heteroskedasticity in the error term, generating non consistent tobit estimators, semi-parametric estimates are provided that confirm the results of the tobit model. The second model is a quadrivariate probit on three different assets (safe, risky and real) and total liabilities; the results show the expected patterns of interdependence suggested by theoretical considerations. Chapter 3 reviews the methodologies for estimating non-linear dynamic panel data models, drawing attention to the problems to be dealt with to obtain consistent estimators. Specific attention is given to the initial condition problem raised by the inclusion of the lagged dependent variable in the set of explanatory variables. The advantage of using dynamic panel data models lies in the fact that they allow to simultaneously account for true state dependence, via the lagged variable, and unobserved heterogeneity via individual effects specification. Chapter 4 applies the models reviewed in Chapter 3 to analyse financial difficulties of Italian households, by using information on net wealth as provided in the panel component of the SHIW. The aim is to test whether households persistently experience financial difficulties over time. A thorough discussion is provided of the alternative approaches proposed by the literature (subjective/qualitative indicators versus quantitative indexes) to identify households in financial distress. Households in financial difficulties are identified as those holding amounts of net wealth lower than the value corresponding to the first quartile of net wealth distribution. Estimation is conducted via four different methods: the pooled probit model, the random effects probit model with exogenous initial conditions, the Heckman model and the recently developed Wooldridge model. Results obtained from all estimators accept the null hypothesis of true state dependence and show that, according with the literature, less sophisticated models, namely the pooled and exogenous models, over-estimate such persistence.
Resumo:
The study of random probability measures is a lively research topic that has attracted interest from different fields in recent years. In this thesis, we consider random probability measures in the context of Bayesian nonparametrics, where the law of a random probability measure is used as prior distribution, and in the context of distributional data analysis, where the goal is to perform inference given avsample from the law of a random probability measure. The contributions contained in this thesis can be subdivided according to three different topics: (i) the use of almost surely discrete repulsive random measures (i.e., whose support points are well separated) for Bayesian model-based clustering, (ii) the proposal of new laws for collections of random probability measures for Bayesian density estimation of partially exchangeable data subdivided into different groups, and (iii) the study of principal component analysis and regression models for probability distributions seen as elements of the 2-Wasserstein space. Specifically, for point (i) above we propose an efficient Markov chain Monte Carlo algorithm for posterior inference, which sidesteps the need of split-merge reversible jump moves typically associated with poor performance, we propose a model for clustering high-dimensional data by introducing a novel class of anisotropic determinantal point processes, and study the distributional properties of the repulsive measures, shedding light on important theoretical results which enable more principled prior elicitation and more efficient posterior simulation algorithms. For point (ii) above, we consider several models suitable for clustering homogeneous populations, inducing spatial dependence across groups of data, extracting the characteristic traits common to all the data-groups, and propose a novel vector autoregressive model to study of growth curves of Singaporean kids. Finally, for point (iii), we propose a novel class of projected statistical methods for distributional data analysis for measures on the real line and on the unit-circle.