12 resultados para Structural evaluation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis evaluated in vivo and in vitro enamel permeability in different physiological and clinical conditions by means of SEM inspection of replicas of enamel surface obtained from polyvinyl siloxane impressions subsequently later cast in polyether impression ma-terial. This technique, not invasive and risk-free, allows the evaluation of fluid outflow from enamel surface and is able to detect the presence of small quantities of fluid, visu-alized as droplets. Fluid outflow on enamel surface represents enamel permeability. This property has a paramount importance in enamel physiolgy and pathology although its ef-fective role in adhesion, caries pathogenesis and prevention today is still not fully under-stood. The aim of the studies proposed was to evaluate enamel permeability changes in differ-ent conditions and to correlate the findings with the actual knowledge about enamel physiology, caries pathogenesis, fluoride and etchinhg treatments. To obtain confirmed data the replica technique has been supported by others specific techniques such as Ra-man and IR spectroscopy and EDX analysis. The first study carried out visualized fluid movement through dental enamel in vivo con-firmed that enamel is a permeable substrate and demonstrated that age and enamel per-meability are closely related. Examined samples from subjects of different ages showed a decreasing number and size of droplets with increasing age: freshly erupted permanent teeth showed many droplets covering the entire enamel surface. Droplets in permanent teeth were prominent along enamel perikymata. These results obtained through SEM inspection of replicas allowed innovative remarks in enamel physiology. An analogous testing has been developed for evaluation of enamel permeability in primary enamel. The results of this second study showed that primary enamel revealed a substantive permeability with droplets covering the entire enamel sur-face without any specific localization accordingly with histological features, without changes during aging signs of post-eruptive maturation. These results confirmed clinical data that showed a higher caries susceptibility for primary enamel and suggested a strong relationship between this one and enamel permeability. Topical fluoride application represents the gold standard for caries prevention although the mechanism of cariostatic effect of fluoride still needs to be clarified. The effects of topical fluoride application on enamel permeability were evaluated. Particularly two dif-ferent treatments (NaF and APF), with different pH, were examined. The major product of topical fluoride application was the deposition of CaF2-like globules. Replicas inspec-tion before and after both treatments at different times intervals and after specific addi-tional clinical interventions showed that such globule formed in vivo could be removed by professional toothbrushing, sonically and chemically by KOH. The results obtained in relation to enamel permeability showed that fluoride treatments temporarily reduced enamel water permeability when CaF2-like globules were removed. The in vivo perma-nence of decreased enamel permeability after CaF2 globules removal has been demon-strated for 1 h for NaF treated teeth and for at least 7 days for APF treated teeth. Important clinical consideration moved from these results. In fact the caries-preventing action of fluoride application may be due, in part, to its ability to decrease enamel water permeability and CaF2 like-globules seem to be indirectly involved in enamel protection over time maintaining low permeability. Others results obtained by metallographic microscope and SEM/EDX analyses of or-thodontic resins fluoride releasing and not demonstrated the relevance of topical fluo-ride application in decreasing the demineralization marks and modifying the chemical composition of the enamel in the treated area. These data obtained in both the experiments confirmed the efficacy of fluoride in caries prevention and contribute to clarify its mechanism of action. Adhesive dentistry is the gold standard for caries treatment and tooth rehabilitation and is founded on important chemical and physical principles involving both enamel and dentine substrates. Particularly acid etching of dental enamel enamel has usually employed in bonding pro-cedures increasing microscopic roughness. Different acids have been tested in the litera-ture suggesting several etching procedures. The acid-induced structural transformations in enamel after different etching treatments by means of Raman and IR spectroscopy analysis were evaluated and these findings were correlated with enamel permeability. Conventional etching with 37% phosphoric acid gel (H3PO4) for 30 s and etching with 15 % HCl for 120 s were investigated. Raman and IR spectroscopy showed that the treatment with both hydrochloric and phosphoric acids induced a decrease in the carbonate content of the enamel apatite. At the same time, both acids induced the formation of HPO42- ions. After H3PO4 treatment the bands due to the organic component of enamel decreased in intensity, while in-creased after HCl treatment. Replicas of H3PO4 treated enamel showed a strongly reduced permeability while replicas of HCl 15% treated samples showed a maintained permeability. A decrease of the enamel organic component, as resulted after H3PO4 treatment, involves a decrease in enamel permeability, while the increase of the organic matter (achieved by HCl treat-ment) still maintains enamel permeability. These results suggested a correlation between the amount of the organic matter, enamel permeability and caries. The results of the different studies carried out in this thesis contributed to clarify and improve the knowledge about enamel properties with important rebounds in theoretical and clinical aspects of Dentistry.
Resumo:
This thesis is a part of a larger study about the characterization of mechanical and histomorphometrical properties of bone. The main objects of this study were the bone tissue properties and its resistance to mechanical loads. Moreover, the knowledge about the equipment selected to carry out the analyses, the micro-computed tomography (micro-CT), was improved. Particular attention was given to the reliability over time of the measuring instrument. In order to understand the main characteristics of bone mechanical properties a study of the skeletal, the bones of which it is composed and biological principles that drive their formation and remodelling, was necessary. This study has led to the definition of two macro-classes describing the main components responsible for the resistance to fracture of bone: quantity and quality of bone. The study of bone quantity is the current clinical standard measure for so-called bone densitometry, and research studies have amply demonstrated that the amount of tissue is correlated with its mechanical properties of elasticity and fracture. However, the models presented in the literature, including information on the mere quantity of tissue, have often been limited in describing the mechanical behaviour. Recent investigations have underlined that also the bone-structure and the tissue-mineralization play an important role in the mechanical characterization of bone tissue. For this reason in this thesis the class defined as bone quality was mainly studied, splitting it into two sub-classes of bone structure and tissue quality. A study on bone structure was designed to identify which structural parameters, among the several presented in the literature, could be integrated with the information about quantity, in order to better describe the mechanical properties of bone. In this way, it was also possible to analyse the iteration between structure and function. It has been known for long that bone tissue is capable of remodeling and changing its internal structure according to loads, but the dynamics of these changes are still being analysed. This part of the study was aimed to identify the parameters that could quantify the structural changes of bone tissue during the development of a given disease: osteoarthritis. A study on tissue quality would have to be divided into different classes, which would require a scale of analysis not suitable for the micro-CT. For this reason the study was focused only on the mineralization of the tissue, highlighting the difference between bone density and tissue density, working in a context where there is still an ongoing scientific debate.
Resumo:
Alzheimer's disease (AD) and cancer represent two of the main causes of death worldwide. They are complex multifactorial diseases and several biochemical targets have been recognized to play a fundamental role in their development. Basing on their complex nature, a promising therapeutical approach could be represented by the so-called "Multi-Target-Directed Ligand" approach. This new strategy is based on the assumption that a single molecule could hit several targets responsible for the onset and/or progression of the pathology. In particular in AD, most currently prescribed drugs aim to increase the level of acetylcholine in the brain by inhibiting the enzyme acetylcholinesterase (AChE). However, clinical experience shows that AChE inhibition is a palliative treatment, and the simple modulation of a single target does not address AD aetiology. Research into newer and more potent anti-AD agents is thus focused on compounds whose properties go beyond AChE inhibition (such as inhibition of the enzyme β-secretase and inhibition of the aggregation of beta-amyloid). Therefore, the MTDL strategy seems a more appropriate approach for addressing the complexity of AD and may provide new drugs for tackling its multifactorial nature. In this thesis, it is described the design of new MTDLs able to tackle the multifactorial nature of AD. Such new MTDLs designed are less flexible analogues of Caproctamine, one of the first MTDL owing biological properties useful for the AD treatment. These new compounds are able to inhibit the enzymes AChE, beta-secretase and to inhibit both AChE-induced and self-induced beta-amyloid aggregation. In particular, the most potent compound of the series is able to inhibit AChE in subnanomolar range, to inhibit β-secretase in micromolar concentration and to inhibit both AChE-induced and self-induced beta-amyloid aggregation in micromolar concentration. Cancer, as AD, is a very complex pathology and many different therapeutical approaches are currently use for the treatment of such pathology. However, due to its multifactorial nature the MTDL approach could be, in principle, apply also to this pathology. Aim of this thesis has been the development of new molecules owing different structural motifs able to simultaneously interact with some of the multitude of targets responsible for the pathology. The designed compounds displayed cytotoxic activity in different cancer cell lines. In particular, the most potent compounds of the series have been further evaluated and they were able to bind DNA resulting 100-fold more potent than the reference compound Mitonafide. Furthermore, these compounds were able to trigger apoptosis through caspases activation and to inhibit PIN1 (preliminary result). This last protein is a very promising target because it is overexpressed in many human cancers, it functions as critical catalyst for multiple oncogenic pathways and in several cancer cell lines depletion of PIN1 determines arrest of mitosis followed by apoptosis induction. In conclusion, this study may represent a promising starting pint for the development of new MTDLs hopefully useful for cancer and AD treatment.
Resumo:
Bread dough and particularly wheat dough, due to its viscoelastic behaviour, is probably the most dynamic and complicated rheological system and its characteristics are very important since they highly affect final products’ textural and sensorial properties. The study of dough rheology has been a very challenging task for many researchers since it can provide numerous information about dough formulation, structure and processing. This explains why dough rheology has been a matter of investigation for several decades. In this research rheological assessment of doughs and breads was performed by using empirical and fundamental methods at both small and large deformation, in order to characterize different types of doughs and final products such as bread. In order to study the structural aspects of food products, image analysis techniques was used for the integration of the information coming from empirical and fundamental rheological measurements. Evaluation of dough properties was carried out by texture profile analysis (TPA), dough stickiness (Chen and Hoseney cell) and uniaxial extensibility determination (Kieffer test) by using a Texture Analyser; small deformation rheological measurements, were performed on a controlled stress–strain rheometer; moreover the structure of different doughs was observed by using the image analysis; while bread characteristics were studied by using texture profile analysis (TPA) and image analysis. The objective of this research was to understand if the different rheological measurements were able to characterize and differentiate the different samples analysed. This in order to investigate the effect of different formulation and processing conditions on dough and final product from a structural point of view. For this aim the following different materials were performed and analysed: - frozen dough realized without yeast; - frozen dough and bread made with frozen dough; - doughs obtained by using different fermentation method; - doughs made by Kamut® flour; - dough and bread realized with the addition of ginger powder; - final products coming from different bakeries. The influence of sub-zero storage time on non-fermented and fermented dough viscoelastic performance and on final product (bread) was evaluated by using small deformation and large deformation methods. In general, the longer the sub-zero storage time the lower the positive viscoelastic attributes. The effect of fermentation time and of different type of fermentation (straight-dough method; sponge-and-dough procedure and poolish method) on rheological properties of doughs were investigated using empirical and fundamental analysis and image analysis was used to integrate this information throughout the evaluation of the dough’s structure. The results of fundamental rheological test showed that the incorporation of sourdough (poolish method) provoked changes that were different from those seen in the others type of fermentation. The affirmative action of some ingredients (extra-virgin olive oil and a liposomic lecithin emulsifier) to improve rheological characteristics of Kamut® dough has been confirmed also when subjected to low temperatures (24 hours and 48 hours at 4°C). Small deformation oscillatory measurements and large deformation mechanical tests performed provided useful information on the rheological properties of samples realized by using different amounts of ginger powder, showing that the sample with the highest amount of ginger powder (6%) had worse rheological characteristics compared to the other samples. Moisture content, specific volume, texture and crumb grain characteristics are the major quality attributes of bread products. The different sample analyzed, “Coppia Ferrarese”, “Pane Comune Romagnolo” and “Filone Terra di San Marino”, showed a decrease of crumb moisture and an increase in hardness over the storage time. Parameters such as cohesiveness and springiness, evaluated by TPA that are indicator of quality of fresh bread, decreased during the storage. By using empirical rheological tests we found several differences among the samples, due to the different ingredients used in formulation and the different process adopted to prepare the sample, but since these products are handmade, the differences could be account as a surplus value. In conclusion small deformation (in fundamental units) and large deformation methods showed a significant role in monitoring the influence of different ingredients used in formulation, different processing and storage conditions on dough viscoelastic performance and on final product. Finally the knowledge of formulation, processing and storage conditions together with the evaluation of structural and rheological characteristics is fundamental for the study of complex matrices like bakery products, where numerous variable can influence their final quality (e.g. raw material, bread-making procedure, time and temperature of the fermentation and baking).
Resumo:
This PhD thesis discusses the rationale for design and use of synthetic oligosaccharides for the development of glycoconjugate vaccines and the role of physicochemical methods in the characterization of these vaccines. The study concerns two infectious diseases that represent a serious problem for the national healthcare programs: human immunodeficiency virus (HIV) and Group A Streptococcus (GAS) infections. Both pathogens possess distinctive carbohydrate structures that have been described as suitable targets for the vaccine design. The Group A Streptococcus cell membrane polysaccharide (GAS-PS) is an attractive vaccine antigen candidate based on its conserved, constant expression pattern and the ability to confer immunoprotection in a relevant mouse model. Analysis of the immunogenic response within at-risk populations suggests an inverse correlation between high anti-GAS-PS antibody titres and GAS infection cases. Recent studies show that a chemically synthesized core polysaccharide-based antigen may represent an antigenic structural determinant of the large polysaccharide. Based on GAS-PS structural analysis, the study evaluates the potential to exploit a synthetic design approach to GAS vaccine development and compares the efficiency of synthetic antigens with the long isolated GAS polysaccharide. Synthetic GAS-PS structural analogues were specifically designed and generated to explore the impact of antigen length and terminal residue composition. For the HIV-1 glycoantigens, the dense glycan shield on the surface of the envelope protein gp120 was chosen as a target. This shield masks conserved protein epitopes and facilitates virus spread via binding to glycan receptors on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope has been a subject to the synthetic vaccine development. The cluster nature of the 2G12 epitope suggested that multivalent antigen presentation was important to develop a carbohydrate based vaccine candidate. I describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates and their immunogenic properties.
Resumo:
The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.
Resumo:
I studied the effects exerted by the modifications on structures and biological activities of the compounds so obtained. I prepared peptide analogues containing unusual amino acids such as halogenated, alkylated (S)- or (R)-tryptophans, useful for the synthesis of mimetics of the endogenous opioid peptide endomorphin-1, or 2-oxo-1,3-oxazolidine-4-carboxylic acids, utilized as pseudo-prolines having a clear all-trans configuration of the preceding peptide bond. The latter gave access to a series of constrained peptidomimetics with potential interest in medicinal chemistry and in the field of the foldamers. In particular, I have dedicated much efforts to the preparation of cyclopentapeptides containing D-configured, alfa-, or beta-aminoacids, and also of cyclotetrapeptides including the retro-inverso modification. The conformational analyses confirmed that these cyclic compounds can be utilized as rigid scaffolds mimicking gamma- or beta-turns, allowing to generate new molecular and 3D diversity. Much work has been dedicated to the structural analysis in solution and in the receptor-bound state, fundamental for giving a rationale to the experimentally determined bioactivity, as well as for predicting the activity of virtual compounds (in silico pre-screen). The conformational analyses in solution has been done mostly by NMR (2D gCosy, Roesy, VT, molecular dynamics, etc.). A special section is dedicated to the prediction of plausible poses of the ligands when bound to the receptors by Molecular Docking. This computational method proved to be a powerful tool for the investigation of ligand-receptor interactions, and for the design of selective agonists and antagonists. Another practical use of cyclic peptidomimetics was the synthesis and biological evaluation of cyclic analogues of endomorphin-1 lacking in a protonable amino group. The studies revealed that a inverse type II beta-turn on D-Trp-Phe constituted the bioactive conformation.
Resumo:
The evaluation of structural performance of existing concrete buildings, built according to standards and materials quite different to those available today, requires procedures and methods able to cover lack of data about mechanical material properties and reinforcement detailing. To this end detailed inspections and test on materials are required. As a consequence tests on drilled cores are required; on the other end, it is stated that non-destructive testing (NDT) cannot be used as the only mean to get structural information, but can be used in conjunction with destructive testing (DT) by a representative correlation between DT and NDT. The aim of this study is to verify the accuracy of some formulas of correlation available in literature between measured parameters, i.e. rebound index, ultrasonic pulse velocity and compressive strength (SonReb Method). To this end a relevant number of DT and NDT tests has been performed on many school buildings located in Cesena (Italy). The above relationships have been assessed on site correlating NDT results to strength of core drilled in adjacent locations. Nevertheless, concrete compressive strength assessed by means of NDT methods and evaluated with correlation formulas has the advantage of being able to be implemented and used for future applications in a much more simple way than other methods, even if its accuracy is strictly limited to the analysis of concretes having the same characteristics as those used for their calibration. This limitation warranted a search for a different evaluation method for the non-destructive parameters obtained on site. To this aim, the methodology of neural identification of compressive strength is presented. Artificial Neural Network (ANN) suitable for the specific analysis were chosen taking into account the development presented in the literature in this field. The networks were trained and tested in order to detect a more reliable strength identification methodology.
Resumo:
Fibre-Reinforced-Plastics are composite materials composed by thin fibres with high mechanical properties, made to work together with a cohesive plastic matrix. The huge advantages of fibre reinforced plastics over traditional materials are their high specific mechanical properties i.e. high stiffness and strength to weight ratios. This kind of composite materials is the most disruptive innovation in the structural materials field seen in recent years and the areas of potential application are still many. However, there are few aspects which limit their growth: on the one hand the information available about their properties and long term behaviour is still scarce, especially if compared with traditional materials for which there has been developed an extended database through years of use and research. On the other hand, the technologies of production are still not as developed as the ones available to form plastics, metals and other traditional materials. A third aspect is that the new properties presented by these materials e.g. their anisotropy, difficult the design of components. This thesis will provide several case-studies with advancements regarding the three limitations mentioned. In particular, the long term mechanical properties have been studied through an experimental analysis of the impact of seawater on GFRP. Regarding production methods, the pre-impregnated cured in autoclave process was considered: a rapid tooling method to produce moulds will be presented, and a study about the production of thick components. Also, two liquid composite moulding methods will be presented, with a case-study regarding a large component with sandwich structure that was produced with the Vacuum-Assisted-Resin-Infusion method, and a case-study regarding a thick con-rod beam that was produced with the Resin-Transfer-Moulding process. The final case-study will analyse the loads acting during the use of a particular sportive component, made with FRP layers and a sandwich structure, practical design rules will be provided.
Resumo:
This dissertation consists of three empirical studies that aim at providing new evidence in the field of public policy evaluation. In particular, the first two chapters focus on the effects of the European cohesion policy, while the third chapter assesses the effectiveness of Italian labour market incentives in reducing long-term unemployment. The first study analyses the effect of EU funds on life satisfaction across European regions , under the assumption that projects financed by structural funds in the fields of employment, education, health and environment may affect the overall quality of life in recipient regions. Using regional data from the European Social Survey in 2002-2006, it resorts to a regression discontinuity design, where the discontinuity is provided by the institutional framework of the policy. The second study aims at estimating the impact of large transfers from a centralized authority to a local administration on the incidence of white collar crimes. It merges a unique dataset on crimes committed in Italian municipalities between 2007 and 2011 with information on the disbursement of EU structural funds in 2007-2013 programming period, employing an instrumental variable estimation strategy that exploits the variation in the electoral cycle at local level. The third study analyses the impact of an Italian labour market policy that allowed firms to cut their labour costs on open-ended job contracts when hiring long-term unemployed workers. It takes advantage of a unique dataset that draws information from the unemployment lists in Veneto region and it resorts to a regression discontinuity approach to estimate the effect of the policy on the job finding rate of long-term unemployed workers.
Resumo:
This case-control study involved a total of 29 autistic children (Au) aged 6 to 12 years, and 28 gender and age-matched typically developing children (TD). We evaluated a high number of peripheral oxidative stress parameters, erythrocyte and lymphocyte membrane functional features and membrane lipid composition of erythrocyte. Erythrocyte TBARS, Peroxiredoxin II, Protein Carbonyl Groups and urinary HEL and isoprostane levels were elevated in AU (confirming an imbalance of the redox status of Au); other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma Total antioxidant capacity and plasma carbonyl groups, erythrocyte SOD and catalase activities) were unchanged, whilst peroxiredoxin I showed a trend of elevated levels in red blood cells of Au children. A very significant reduction of both erythrocyte and lymphocyte Na+, K+-ATPase activity (NKA), a reduction of erythrocyte membrane fluidity, a reduction of phospatydyl serine exposition on erythrocyte membranes, an alteration in erythrocyte fatty acid membrane profile (increase in MUFA and in ω6/ω3 ratio due to decrease in EPA and DHA) and a reduction of cholesterol content of erythrocyte membrane were found in Au compared to TD, without change in erythrocyte membrane sialic acid content and in lymphocyte membrane fluidity. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity, and ADOS and CARS score are inversely related to peroxiredoxin II levels. Oxidative stress and erythrocyte structural and functional alterations may play a role in the pathogenesis of Autism Spectrum Disorders and could be potentially utilized as peripheral biomarkers.
Resumo:
This thesis aims at investigating a new approach to document analysis based on the idea of structural patterns in XML vocabularies. My work is founded on the belief that authors do naturally converge to a reasonable use of markup languages and that extreme, yet valid instances are rare and limited. Actual documents, therefore, may be used to derive classes of elements (patterns) persisting across documents and distilling the conceptualization of the documents and their components, and may give ground for automatic tools and services that rely on no background information (such as schemas) at all. The central part of my work consists in introducing from the ground up a formal theory of eight structural patterns (with three sub-patterns) that are able to express the logical organization of any XML document, and verifying their identifiability in a number of different vocabularies. This model is characterized by and validated against three main dimensions: terseness (i.e. the ability to represent the structure of a document with a small number of objects and composition rules), coverage (i.e. the ability to capture any possible situation in any document) and expressiveness (i.e. the ability to make explicit the semantics of structures, relations and dependencies). An algorithm for the automatic recognition of structural patterns is then presented, together with an evaluation of the results of a test performed on a set of more than 1100 documents from eight very different vocabularies. This language-independent analysis confirms the ability of patterns to capture and summarize the guidelines used by the authors in their everyday practice. Finally, I present some systems that work directly on the pattern-based representation of documents. The ability of these tools to cover very different situations and contexts confirms the effectiveness of the model.