3 resultados para Stormwater
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Urbanization is a continuing phenomenon in all the world. Grasslands, forests, etc. are being continually changed to residential, commercial and industrial complexes, roads and streets, and so on. One of the side effects of urbanization with which engineers and planners must deal with, is the increase of peak flows and volumes of runoff from rainfall events. As a result, the urban drainage and flood control systems must be designed to accommodate the peak flows from a variety of storms that may occur. Usually the peak flow, after development, is required not to exceed what would have occurred from the same storm under conditions existing prior to development. In order to do this it is necessary to design detention storage to hold back runoff and to release it downstream at controlled rates. In the first part of the work have been developed various simplified formulations that can be adopted for the design of stormwater detention facilities. In order to obtain a simplified hydrograph were adopted two approaches: the kinematic routing technique and the linear reservoir schematization. For the two approaches have been also obtained other two formulations depending if the IDF (intensity-duration-frequency) curve is described with two or three parameters. Other formulations have been developed taking into account if the outlet have a constant discharge or it depends on the water level in the pond. All these formulations can be easily applied when are known the characteristics of the drainage system and maximum discharge that these is in the outlet and has been defined a Return Period which characterize the IDF curve. In this way the volume of the detention pond can be calculated. In the second part of the work have been analyzed the design of detention ponds adopting continuous simulation models. The drainage systems adopted for the simulations, performed with SWMM5, are fictitious systems characterized by different sizes, and different shapes of the catchments and with a rainfall historical time series of 16 years recorded in Bologna. This approach suffers from the fact that continuous record of rainfall is often not available and when it is, the cost of such modelling can be very expensive, and that the majority of design practitioners are not prepared to use continuous long term modelling in the design of stormwater detention facilities. In the third part of the work have been analyzed statistical and stochastic methodologies in order to define the volume of the detention pond. In particular have been adopted the results of the long term simulation, performed with SWMM, to obtain the data to apply statistic and stochastic formulation. All these methodologies have been compared and correction coefficient have been proposed on the basis of the statistic and stochastic form. In this way engineers which have to design a detention pond can apply a simplified procedure appropriately corrected with the proposed coefficient.
Resumo:
As land is developed, the impervious surfaces that are created increase the amount of runoff during rainfall events, disrupting the natural hydrologic cycle, with an increment in volume of runoff and in pollutant loadings. Pollutants deposited or derived from an activity on the land surface will likely end up in stormwater runoff in some concentration, such as nutrients, sediment, heavy metals, hydrocarbons, gasoline additives, pathogens, deicers, herbicides and pesticides. Several of these pollutants are particulate-bound, so it appears clear that sediment removal can provide significant water-quality improvements and it appears to be important the knowledge of the ability of stromwater treatment devices to retain particulate matter. For this reason three different units which remove sediments have been tested through laboratory. In particular a roadside gully pot has been tested under steady hydraulic conditions, varying the characteristics of the influent solids (diameter, particle size distribution and specific gravity). The efficiency in terms of particles retained has been evaluated as a function of influent flow rate and particles characteristics; results have been compared to efficiency evaluated applying an overflow rate model. Furthermore the role of particles settling velocity in efficiency determination has been investigated. After the experimental runs on the gully pot, a standard full-scale model of an hydrodynamic separator (HS) has been tested under unsteady influent flow rate condition, and constant solid concentration at the input. The results presented in this study illustrate that particle separation efficiency of the unit is predominately influenced by operating flow rate, which strongly affects the particles and hydraulic residence time of the system. The efficiency data have been compared to results obtained from a modified overflow rate model; moreover the residence time distribution has been experimentally determined through tracer analyses for several steady flow rates. Finally three testing experiments have been performed for two different configurations of a full-scale model of a clarifier (linear and crenulated) under unsteady influent flow rate condition, and constant solid concentration at the input. The results illustrate that particle separation efficiency of the unit is predominately influenced by the configuration of the unit itself. Turbidity measures have been used to compare turbidity with the suspended sediments concentration, in order to find a correlation between these two values, which can allow to have a measure of the sediments concentration simply installing a turbidity probe.
Resumo:
I tetti verdi rappresentano, sempre più frequentemente, una tecnologia idonea alla mitigazione alle problematiche connesse all’ urbanizzazione, tuttavia la conoscenza delle prestazioni dei GR estensivi in clima sub-Mediterraneo è ancora limitata. La presente ricerca è supportata da 15 mesi di analisi sperimentali su due GR situati presso la Scuola di Ingegneria di Bologna. Inizialmente vengono comparate, tra loro e rispetto a una superficie di riferimento (RR), le prestazioni idrologiche ed energetiche dei due GR, caratterizzati da vegetazione a Sedum (SR) e a erbe native perenni (NR). Entrambi riducono i volumi defluiti e le temperature superficiali. Il NR si dimostra migliore del SR sia in campo idrologico che termico, la fisiologia della vegetazione del NR determina l'apertura diurna degli stomi e conseguentemente una maggiore evapotraspirazione (ET). Successivamente si sono studiate la variazioni giornaliere di umidità nel substrato del SR riscontrando che la loro ampiezza è influenzata dalla temperatura, dall’umidità iniziale e dalla fase vegetativa. Queste sono state simulate mediante un modello idrologico basato sull'equazione di bilancio idrico e su due modelli convenzionali per la stima della ET potenziale combinati con una funzione di estrazione dell’ umidità dal suolo. Sono stati proposti dei coefficienti di correzione, ottenuti per calibrazione, per considerare le differenze tra la coltura di riferimento e le colture nei GR durante le fasi di crescita. Infine, con l’ausilio di un modello implementato in SWMM 5.1. 007 utilizzando il modulo Low Impact Development (LID) durante simulazioni in continuo (12 mesi) si sono valutate le prestazioni in termini di ritenzione dei plot SR e RR. Il modello, calibrato e validato, mostra di essere in grado di riprodurre in modo soddisfacente i volumi defluiti dai due plot. Il modello, a seguito di una dettagliata calibrazione, potrebbe supportare Ingegneri e Amministrazioni nella valutazioni dei vantaggi derivanti dall'utilizzo dei GR.