2 resultados para Stochastic modelling
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In biological world, life of cells is guaranteed by their ability to sense and to respond to a large variety of internal and external stimuli. In particular, excitable cells, like muscle or nerve cells, produce quick depolarizations in response to electrical, mechanical or chemical stimuli: this means that they can change their internal potential through a quick exchange of ions between cytoplasm and the external environment. This can be done thanks to the presence of ion channels, proteins that span the lipid bilayer and act like switches, allowing ionic current to flow opening and shutting in a stochastic way. For a particular class of ion channels, ligand-gated ion channels, the gating processes is strongly influenced by binding between receptive sites located on the channel surface and specific target molecules. These channels, inserted in biomimetic membranes and in presence of a proper electronic system for acquiring and elaborating the electrical signal, could give us the possibility of detecting and quantifying concentrations of specific molecules in complex mixtures from ionic currents across the membrane; in this thesis work, this possibility is investigated. In particular, it reports a description of experiments focused on the creation and the characterization of artificial lipid membranes, the reconstitution of ion channels and the analysis of their electrical and statistical properties. Moreover, after a chapter about the basis of the modelling of the kinetic behaviour of ligand gated ion channels, a possible approach for the estimation of the target molecule concentration, based on a statistical analysis of the ion channel open probability, is proposed. The fifth chapter contains a description of the kinetic characterisation of a ligand gated ion channel: the homomeric α2 isoform of the glycine receptor. It involved both experimental acquisitions and signal analysis. The last chapter represents the conclusions of this thesis, with some remark on the effective performance that may be achieved using ligand gated ion channels as sensing elements.
Resumo:
Basic concepts and definitions relative to Lagrangian Particle Dispersion Models (LPDMs)for the description of turbulent dispersion are introduced. The study focusses on LPDMs that use as input, for the large scale motion, fields produced by Eulerian models, with the small scale motions described by Lagrangian Stochastic Models (LSMs). The data of two different dynamical model have been used: a Large Eddy Simulation (LES) and a General Circulation Model (GCM). After reviewing the small scale closure adopted by the Eulerian model, the development and implementation of appropriate LSMs is outlined. The basic requirement of every LPDM used in this work is its fullfillment of the Well Mixed Condition (WMC). For the dispersion description in the GCM domain, a stochastic model of Markov order 0, consistent with the eddy-viscosity closure of the dynamical model, is implemented. A LSM of Markov order 1, more suitable for shorter timescales, has been implemented for the description of the unresolved motion of the LES fields. Different assumptions on the small scale correlation time are made. Tests of the LSM on GCM fields suggest that the use of an interpolation algorithm able to maintain an analytical consistency between the diffusion coefficient and its derivative is mandatory if the model has to satisfy the WMC. Also a dynamical time step selection scheme based on the diffusion coefficient shape is introduced, and the criteria for the integration step selection are discussed. Absolute and relative dispersion experiments are made with various unresolved motion settings for the LSM on LES data, and the results are compared with laboratory data. The study shows that the unresolved turbulence parameterization has a negligible influence on the absolute dispersion, while it affects the contribution of the relative dispersion and meandering to absolute dispersion, as well as the Lagrangian correlation.