4 resultados para Still life
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Compared to other, plastic materials have registered a strong acceleration in production and consumption during the last years. Despite the existence of waste management systems, plastic_based materials are still a pervasive presence in the environment, with negative consequences on marine ecosystem and human health. The recycling is still challenging due to the growing complexity of product design, the so-called overpackaging, the insufficient and inadequate recycling infrastructure, the weak market of recycled plastics and the high cost of waste treatment and disposal. The Circular economy package, the European Strategy for plastics in a circular economy and the recent European Green Deal include very ambitious programmes to rethink the entire plastic value chain. As regards packaging, all plastic packaging will have to be 100% recyclable (or reusable) and 55% recycled by 2030. Regions are consequently called upon to set up a robust plan able to fit the European objectives. It takes on greater importance in Emilia Romagna where the Packaging valley is located. This thesis supports the definition of a strategy aimed to establish an after-use plastics economy in the region. The PhD work has set the basis and the instruments to establish the so-called Circularity Strategy with the aim to turn about 92.000t of plastic waste into profitable secondary resources. System innovation, life cycle thinking and participative backcasting method have allowed to deeply analyse the current system, orientate the problem and explore sustainable solutions through a broad stakeholder participation. A material flow analysis, accompanied by a barrier analysis, has supported the identification of the gaps between the present situation and the 2030 scenario. Eco-design for and from recycling (and a mass _based recycling rate (based on the effective amount of plastic wastes turned into secondary plastics), valorized by a value_based indicator, are the key-points of the action plan.
Resumo:
The Agenda 2030 contains 17 integrated Sustainable Development Goals (SDGs). SDG 12 for Sustainable Consumption and Production (SCP) promotes the efficient use of resources through a systemic change that decouples economic growth from environmental degradation. The Food Systems (FS) pillar in SDG 12 entails paramount relevance due to its interconnection to many other SDGs, and even when being a crucial world food supplier, the Latin American and Caribbean (LAC) Region struggles with environmental and social externalities, low investment in agriculture, inequity, food insecurity, poverty, and migration. Life Cycle Thinking (LCT) was regarded as a pertinent approach to identify hotspots and trade-offs, and support decision-making process to aid LAC Region countries as Costa Rica to diagnose sustainability and overcome certain challenges. This thesis aimed to ‘evaluate the sustainability of selected products from food supply chains in Costa Rica, to provide inputs for further sustainable decision-making, through the application of Life Cycle Thinking’. To do this, Life Cycle Assessment (LCA), Life Cycle Costing (LCC), and Social Life Cycle Assessment (S-LCA) evaluated the sustainability of food-waste-to-energy alternatives, and the production of green coffee, raw milk and leafy vegetables, and identified environmental, social and cost hotspots. This approach also proved to be a useful component of decision-making and policy-making processes together with other methods. LCT scientific literature led by LAC or Costa Rican researchers is still scarce; therefore, this research contributed to improve capacities in the use of LCT in this context, while offering potential replicability of the developed frameworks in similar cases. Main limitations related to the representativeness and availability of primary data; however, future research and extension activities are foreseen to increase local data availability, capacity building, and the discussion of potential integration through Life Cycle Sustainability Assessment (LCSA).
Resumo:
Lower limb amputation is an event that inevitably changes the lifestyle of the person with a significant impact on quality of life. The socket-type prosthesis entails that the residual limb is in direct contact with the socket which often implies numerous disadvantages. Osseointegrated prosthesis is a solution that avoids skin problems because not include the presence of the socket. In this type of prosthesis, a stem is surgically inserted inside the medullary canal and connected with the external prosthetic limb. Therefore, this thesis aims to highlight and explore the main strengths and problems of osseointegrated prostheses and to examine the role of physical activity, with attention to functional capacity and bone quality. The objectives of the thesis will be developed through 5 studies: (I) A gait analysis of a 44 years-old male patient who underwent surgery for the implantation of an osseointegrated prosthesis; (II) A systematic review to investigate the state of stump bone quality in patients with limb amputations; (III) A systematic review of the technologies involved in such devices has been carried out to identify the most fruitful ones in improving bone quality; (IV) A systematic review investigating the topic of physical activity and bone turnover biomarkers; (V) A systematic review to investigate the effects of physical activity interventions combined with drug treatments on bone biomarkers in people with osteopenia and osteoporosis. The integrated prosthesis is a good solution for people with lower limb amputation who cannot use their traditional socket-type prosthesis. Although many objectives have already been achieved, there are still many aspects that we can improve. These include the creation of a multidisciplinary path that support patients along their path, with particular attention to the pre-surgery and the post-rehabilitation phase that is still lacking even if of fundamental impact in determining the quality of life.
Resumo:
Fretting fatigue is a fatigue damage process that occurs when two surfaces in contact with each other are subjected to relative micro-slip, causing a reduced fatigue life with respect to the plain fatigue case. Fretting has been now studied deeply for over 50 years, but still no univocal design approach has been universally accepted. This thesis presents a method for predicting the fretting fatigue life of materials based on the material specific fatigue parameters. To validate the method, a set of fretting fatigue experimental tests have been run, using a newly designed specimen. FE analyses of the tests were also run and the SWT parameter was retrieved and it was found to be useful to successfully identify which samples failed. Finally, S-N curves were retrieved by using two different fatigue life predicting methods (CoffinManson and Jahed-Varvani). The two different methods were compared with the experimental results and it was found that the Jahed-Varvani method gave accurate results in terms of fretting fatigue life.