2 resultados para Statistical modelling

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Statistical modelling and statistical learning theory are two powerful analytical frameworks for analyzing signals and developing efficient processing and classification algorithms. In this thesis, these frameworks are applied for modelling and processing biomedical signals in two different contexts: ultrasound medical imaging systems and primate neural activity analysis and modelling. In the context of ultrasound medical imaging, two main applications are explored: deconvolution of signals measured from a ultrasonic transducer and automatic image segmentation and classification of prostate ultrasound scans. In the former application a stochastic model of the radio frequency signal measured from a ultrasonic transducer is derived. This model is then employed for developing in a statistical framework a regularized deconvolution procedure, for enhancing signal resolution. In the latter application, different statistical models are used to characterize images of prostate tissues, extracting different features. These features are then uses to segment the images in region of interests by means of an automatic procedure based on a statistical model of the extracted features. Finally, machine learning techniques are used for automatic classification of the different region of interests. In the context of neural activity signals, an example of bio-inspired dynamical network was developed to help in studies of motor-related processes in the brain of primate monkeys. The presented model aims to mimic the abstract functionality of a cell population in 7a parietal region of primate monkeys, during the execution of learned behavioural tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to put forward a statistical mechanics theory of social interaction, generalizing econometric discrete choice models. After showing the formal equivalence linking econometric multinomial logit models to equilibrium statical mechanics, a multi- population generalization of the Curie-Weiss model for ferromagnets is considered as a starting point in developing a model capable of describing sudden shifts in aggregate human behaviour. Existence of the thermodynamic limit for the model is shown by an asymptotic sub-additivity method and factorization of correlation functions is proved almost everywhere. The exact solution for the model is provided in the thermodynamical limit by nding converging upper and lower bounds for the system's pressure, and the solution is used to prove an analytic result regarding the number of possible equilibrium states of a two-population system. The work stresses the importance of linking regimes predicted by the model to real phenomena, and to this end it proposes two possible procedures to estimate the model's parameters starting from micro-level data. These are applied to three case studies based on census type data: though these studies are found to be ultimately inconclusive on an empirical level, considerations are drawn that encourage further refinements of the chosen modelling approach, to be considered in future work.