4 resultados para Static Posture
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Il presente elaborato ha per oggetto la tematica del Sé, in particolar modo il Sé corporeo. Il primo capitolo illustrerà la cornice teorica degli studi sul riconoscimento del Sé corporeo, affrontando come avviene l’elaborazione del proprio corpo e del proprio volto rispetto alle parti corporee delle altre persone. Il secondo capitolo descriverà uno studio su soggetti sani che indaga l’eccitabilità della corteccia motoria nei processi di riconoscimento sé/altro. I risultati mostrano un incremento dell’eccitabilità corticospinale dell’emisfero destro in seguito alla presentazione di stimoli propri (mano e cellulare), a 600 e 900 ms dopo la presentazione dello stimolo, fornendo informazioni sulla specializzazione emisferica substrati neurali e sulla temporalità dei processi che sottendono all’elaborazione del sé. Il terzo capitolo indagherà il contributo del movimento nel riconoscimento del Sé corporeo in soggetti sani ed in pazienti con lesione cerebrale destra. Le evidenze mostrano come i pazienti, che avevano perso la facilitazione nell’elaborare le parti del proprio corpo statiche, presentano tale facilitazione in seguito alla presentazione di parti del proprio corpo in movimento. Il quarto capitolo si occuperà dello sviluppo del sé corporeo in bambini con sviluppo atipico, affetti da autismo, con riferimento al riconoscimento di posture emotive proprie ed altrui. Questo studio mostra come alcuni processi legati al sé possono essere preservati anche in bambini affetti da autismo. Inoltre i dati mostrano che il riconoscimento del sé corporeo è modulato dalle emozioni espresse dalle posture corporee sia in bambini con sviluppo tipico che in bambini affetti da autismo. Il quinto capitolo sarà dedicato al ruolo dei gesti nel riconoscimento del corpo proprio ed altrui. I dati di questo studio evidenziano come il contenuto comunicativo dei gesti possa facilitare l’elaborazione di parti del corpo altrui. Nella discussione generale i risultati dei diversi studi verranno considerati all’interno della loro cornice teorica.
Resumo:
A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the evaluation of tangential and normal stresses in moderately thick functionally graded conical and cylindrical shells subjected to mechanical loadings. Several types of graded materials are investigated. The functionally graded material consists of ceramic and metallic constituents. A four parameter power law function is used. The UTSDT allows the presence of a finite transverse shear stress at the top and bottom surfaces of the graded shell. In addition, the initial curvature effect included in the formulation leads to the generalization of the present theory (GUTSDT). The Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the governing equations, the external boundary conditions and the compatibility conditions. Transverse and normal stresses are also calculated by integrating the three dimensional equations of equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point of the conical or cylindrical shell or panel can be given. The initial curvature effect and the role of the power law functions are shown for a wide range of functionally conical and cylindrical shells under various loading and boundary conditions. Finally, numerical examples of the available literature are worked out.
Resumo:
Massive parallel robots (MPRs) driven by discrete actuators are force regulated robots that undergo continuous motions despite being commanded through a finite number of states only. Designing a real-time control of such systems requires fast and efficient methods for solving their inverse static analysis (ISA), which is a challenging problem and the subject of this thesis. In particular, five Artificial intelligence methods are proposed to investigate the on-line computation and the generalization error of ISA problem of a class of MPRs featuring three-state force actuators and one degree of revolute motion.
Resumo:
This dissertation studies the geometric static problem of under-constrained cable-driven parallel robots (CDPRs) supported by n cables, with n ≤ 6. The task consists of determining the overall robot configuration when a set of n variables is assigned. When variables relating to the platform posture are assigned, an inverse geometric static problem (IGP) must be solved; whereas, when cable lengths are given, a direct geometric static problem (DGP) must be considered. Both problems are challenging, as the robot continues to preserve some degrees of freedom even after n variables are assigned, with the final configuration determined by the applied forces. Hence, kinematics and statics are coupled and must be resolved simultaneously. In this dissertation, a general methodology is presented for modelling the aforementioned scenario with a set of algebraic equations. An elimination procedure is provided, aimed at solving the governing equations analytically and obtaining a least-degree univariate polynomial in the corresponding ideal for any value of n. Although an analytical procedure based on elimination is important from a mathematical point of view, providing an upper bound on the number of solutions in the complex field, it is not practical to compute these solutions as it would be very time-consuming. Thus, for the efficient computation of the solution set, a numerical procedure based on homotopy continuation is implemented. A continuation algorithm is also applied to find a set of robot parameters with the maximum number of real assembly modes for a given DGP. Finally, the end-effector pose depends on the applied load and may change due to external disturbances. An investigation into equilibrium stability is therefore performed.