9 resultados para State-space
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
While imperfect information games are an excellent model of real-world problems and tasks, they are often difficult for computer programs to play at a high level of proficiency, especially if they involve major uncertainty and a very large state space. Kriegspiel, a variant of chess making it similar to a wargame, is a perfect example: while the game was studied for decades from a game-theoretical viewpoint, it was only very recently that the first practical algorithms for playing it began to appear. This thesis presents, documents and tests a multi-sided effort towards making a strong Kriegspiel player, using heuristic searching, retrograde analysis and Monte Carlo tree search algorithms to achieve increasingly higher levels of play. The resulting program is currently the strongest computer player in the world and plays at an above-average human level.
Resumo:
Non-Equilibrium Statistical Mechanics is a broad subject. Grossly speaking, it deals with systems which have not yet relaxed to an equilibrium state, or else with systems which are in a steady non-equilibrium state, or with more general situations. They are characterized by external forcing and internal fluxes, resulting in a net production of entropy which quantifies dissipation and the extent by which, by the Second Law of Thermodynamics, time-reversal invariance is broken. In this thesis we discuss some of the mathematical structures involved with generic discrete-state-space non-equilibrium systems, that we depict with networks in all analogous to electrical networks. We define suitable observables and derive their linear regime relationships, we discuss a duality between external and internal observables that reverses the role of the system and of the environment, we show that network observables serve as constraints for a derivation of the minimum entropy production principle. We dwell on deep combinatorial aspects regarding linear response determinants, which are related to spanning tree polynomials in graph theory, and we give a geometrical interpretation of observables in terms of Wilson loops of a connection and gauge degrees of freedom. We specialize the formalism to continuous-time Markov chains, we give a physical interpretation for observables in terms of locally detailed balanced rates, we prove many variants of the fluctuation theorem, and show that a well-known expression for the entropy production due to Schnakenberg descends from considerations of gauge invariance, where the gauge symmetry is related to the freedom in the choice of a prior probability distribution. As an additional topic of geometrical flavor related to continuous-time Markov chains, we discuss the Fisher-Rao geometry of nonequilibrium decay modes, showing that the Fisher matrix contains information about many aspects of non-equilibrium behavior, including non-equilibrium phase transitions and superposition of modes. We establish a sort of statistical equivalence principle and discuss the behavior of the Fisher matrix under time-reversal. To conclude, we propose that geometry and combinatorics might greatly increase our understanding of nonequilibrium phenomena.
Resumo:
This thesis work has been motivated by an internal benchmark dealing with the output regulation problem of a nonlinear non-minimum phase system in the case of full-state feedback. The system under consideration structurally suffers from finite escape time, and this condition makes the output regulation problem very hard even for very simple steady-state evolution or exosystem dynamics, such as a simple integrator. This situation leads to studying the approaches developed for controlling Non-minimum phase systems and how they affect feedback performances. Despite a lot of frequency domain results, only a few works have been proposed for describing the performance limitations in a state space system representation. In particular, in our opinion, the most relevant research thread exploits the so-called Inner-Outer Decomposition. Such decomposition allows splitting the Non-minimum phase system under consideration into a cascade of two subsystems: a minimum phase system (the outer) that contains all poles of the original system and an all-pass Non-minimum phase system (the inner) that contains all the unavoidable pathologies of the unstable zero dynamics. Such a cascade decomposition was inspiring to start working on functional observers for linear and nonlinear systems. In particular, the idea of a functional observer is to exploit only the measured signals from the system to asymptotically reconstruct a certain function of the system states, without necessarily reconstructing the whole state vector. The feature of asymptotically reconstructing a certain state functional plays an important role in the design of a feedback controller able to stabilize the Non-minimum phase system.
Resumo:
Ground-based Earth troposphere calibration systems play an important role in planetary exploration, especially to carry out radio science experiments aimed at the estimation of planetary gravity fields. In these experiments, the main observable is the spacecraft (S/C) range rate, measured from the Doppler shift of an electromagnetic wave transmitted from ground, received by the spacecraft and coherently retransmitted back to ground. If the solar corona and interplanetary plasma noise is already removed from Doppler data, the Earth troposphere remains one of the main error sources in tracking observables. Current Earth media calibration systems at NASA’s Deep Space Network (DSN) stations are based upon a combination of weather data and multidirectional, dual frequency GPS measurements acquired at each station complex. In order to support Cassini’s cruise radio science experiments, a new generation of media calibration systems were developed, driven by the need to achieve the goal of an end-to-end Allan deviation of the radio link in the order of 3×〖10〗^(-15) at 1000 s integration time. The future ESA’s Bepi Colombo mission to Mercury carries scientific instrumentation for radio science experiments (a Ka-band transponder and a three-axis accelerometer) which, in combination with the S/C telecommunication system (a X/X/Ka transponder) will provide the most advanced tracking system ever flown on an interplanetary probe. Current error budget for MORE (Mercury Orbiter Radioscience Experiment) allows the residual uncalibrated troposphere to contribute with a value of 8×〖10〗^(-15) to the two-way Allan deviation at 1000 s integration time. The current standard ESA/ESTRACK calibration system is based on a combination of surface meteorological measurements and mathematical algorithms, capable to reconstruct the Earth troposphere path delay, leaving an uncalibrated component of about 1-2% of the total delay. In order to satisfy the stringent MORE requirements, the short time-scale variations of the Earth troposphere water vapor content must be calibrated at ESA deep space antennas (DSA) with more precise and stable instruments (microwave radiometers). In parallel to this high performance instruments, ESA ground stations should be upgraded to media calibration systems at least capable to calibrate both troposphere path delay components (dry and wet) at sub-centimetre level, in order to reduce S/C navigation uncertainties. The natural choice is to provide a continuous troposphere calibration by processing GNSS data acquired at each complex by dual frequency receivers already installed for station location purposes. The work presented here outlines the troposphere calibration technique to support both Deep Space probe navigation and radio science experiments. After an introduction to deep space tracking techniques, observables and error sources, in Chapter 2 the troposphere path delay is widely investigated, reporting the estimation techniques and the state of the art of the ESA and NASA troposphere calibrations. Chapter 3 deals with an analysis of the status and the performances of the NASA Advanced Media Calibration (AMC) system referred to the Cassini data analysis. Chapter 4 describes the current release of a developed GNSS software (S/W) to estimate the troposphere calibration to be used for ESA S/C navigation purposes. During the development phase of the S/W a test campaign has been undertaken in order to evaluate the S/W performances. A description of the campaign and the main results are reported in Chapter 5. Chapter 6 presents a preliminary analysis of microwave radiometers to be used to support radio science experiments. The analysis has been carried out considering radiometric measurements of the ESA/ESTEC instruments installed in Cabauw (NL) and compared with the requirements of MORE. Finally, Chapter 7 summarizes the results obtained and defines some key technical aspects to be evaluated and taken into account for the development phase of future instrumentation.
Resumo:
Can space and place foster child development, and in particular social competence and ecological literacy? If yes, how can space and place do that? This study shows that the answer to the first question is positive and then tries to explain the way space and place can make a difference. The thesis begins with the review of literature from different disciplines – child development and child psychology, education, environmental psychology, architecture and landscape architecture. Some bridges among such disciplines are created and in some cases the ideas from the different areas of research merge: thus, this is an interdisciplinary study. The interdisciplinary knowledge from these disciplines is translated into a range of design suggestions that can foster the development of social competence and ecological literacy. Using scientific knowledge from different disciplines is a way of introducing forms of evidence into the development of design criteria. However, the definition of design criteria also has to pass through the study of a series of school buildings and un-built projects: case studies can give a positive contribution to the criteria because examples and good practices can help “translating” the theoretical knowledge into design ideas and illustrations. To do that, the different case studies have to be assessed in relation to the various themes that emerged in the literature review. Finally, research by design can be used to help define the illustrated design criteria: based on all the background knowledge that has been built, the role of the architect is to provide a series of different design solutions that can give answers to the different “questions” emerged in the literature review.
An Integrated Transmission-Media Noise Calibration Software For Deep-Space Radio Science Experiments
Resumo:
The thesis describes the implementation of a calibration, format-translation and data conditioning software for radiometric tracking data of deep-space spacecraft. All of the available propagation-media noise rejection techniques available as features in the code are covered in their mathematical formulations, performance and software implementations. Some techniques are retrieved from literature and current state of the art, while other algorithms have been conceived ex novo. All of the three typical deep-space refractive environments (solar plasma, ionosphere, troposphere) are dealt with by employing specific subroutines. Specific attention has been reserved to the GNSS-based tropospheric path delay calibration subroutine, since it is the most bulky module of the software suite, in terms of both the sheer number of lines of code, and development time. The software is currently in its final stage of development and once completed will serve as a pre-processing stage for orbit determination codes. Calibration of transmission-media noise sources in radiometric observables proved to be an essential operation to be performed of radiometric data in order to meet the more and more demanding error budget requirements of modern deep-space missions. A completely autonomous and all-around propagation-media calibration software is a novelty in orbit determination, although standalone codes are currently employed by ESA and NASA. The described S/W is planned to be compatible with the current standards for tropospheric noise calibration used by both these agencies like the AMC, TSAC and ESA IFMS weather data, and it natively works with the Tracking Data Message file format (TDM) adopted by CCSDS as standard aimed to promote and simplify inter-agency collaboration.
Resumo:
The navigation of deep space spacecraft requires accurate measurement of the probe’s state and attitude with respect to a body whose ephemerides may not be known with good accuracy. The heliocentric state of the spacecraft is estimated through radiometric techniques (ranging, Doppler, and Delta-DOR), while optical observables can be introduced to improve the uncertainty in the relative position and attitude with respect to the target body. In this study, we analyze how simulated optical observables affect the estimation of parameters in an orbit determination problem, considering the case of the ESA’s Hera mission towards the binary asteroid system composed of Didymos and Dimorphos. To this extent, a shape model and a photometric function are used to create synthetic onboard camera images. Then, using a stereophotoclinometry technique on some of the simulated images, we create a database of maplets that describe the 3D geometry of the surface around a set of landmarks. The matching of maplets with the simulated images provides the optical observables, expressed as pixel coordinates in the camera frame, which are fed to an orbit determination filter to estimate a certain number of solve-for parameters. The noise introduced in the output optical observables by the image processing can be quantified using as a metric the quality of the residuals, which is used to fine-tune the maplet-matching parameters. In particular, the best results are obtained when using small maplets, with high correlation coefficients and occupation factors.
Resumo:
Torpor is a successful survival strategy displayed by several mammalian species to cope with harsh environmental conditions. A complex interplay of ambient, genetic and circadian stimuli acts centrally to induce a severe suppression of metabolic rate, usually followed by an apparently undefended reduction of body temperature. Some animals, such as marmots, are able to maintain this physiological state for months (hibernation), during which torpor bouts are periodically interrupted by short interbouts of normothermia (arousals). Interestingly, torpor adaptations have been shown to be associated with a large resistance towards stressors, such as radiation: indeed, if irradiated during torpor, hibernators can tolerate higher doses of radiation, showing an increased survival rate. New insights for radiotherapy and long-term space exploration could arise from the induction of torpor in non-hibernators, like humans. The present research project is centered on synthetic torpor (ST), a hypometabolic/hypothermic condition induced in a non-hibernator, the rat, through the pharmacological inhibition of the Raphe Pallidus, a key brainstem area controlling thermogenic effectors. By exploiting this procedure, this thesis aimed at: i) providing a multiorgan description of the functional cellular adaptations to ST; ii) exploring the possibility, and the underpinning molecular mechanisms, of enhanced radioresistance induced by ST. To achieve these aims, transcriptional and histological analysis have been performed in multiple organs of synthetic torpid rats and normothermic rats, either exposed or not exposed to 3 Gy total body of X-rays. The results showed that: i) similarly to natural torpor, ST induction leads to the activation of survival and stress resistance responses, which allow the organs to successfully adapt to the new homeostasis; ii) ST provides tissue protection against radiation damage, probably mainly through the cellular adaptations constitutively induced by ST, even though the triggering of specific responses when the animal is irradiated during hypothermia might play a role.
Resumo:
The aim of this dissertation is to describe the methodologies required to design, operate, and validate the performance of ground stations dedicated to near and deep space tracking, as well as the models developed to process the signals acquired, from raw data to the output parameters of the orbit determination of spacecraft. This work is framed in the context of lunar and planetary exploration missions by addressing the challenges in receiving and processing radiometric data for radio science investigations and navigation purposes. These challenges include the designing of an appropriate back-end to read, convert and store the antenna voltages, the definition of appropriate methodologies for pre-processing, calibration, and estimation of radiometric data for the extraction of information on the spacecraft state, and the definition and integration of accurate models of the spacecraft dynamics to evaluate the goodness of the recorded signals. Additionally, the experimental design of acquisition strategies to perform direct comparison between ground stations is described and discussed. In particular, the evaluation of the differential performance between stations requires the designing of a dedicated tracking campaign to maximize the overlap of the recorded datasets at the receivers, making it possible to correlate the received signals and isolate the contribution of the ground segment to the noise in the single link. Finally, in support of the methodologies and models presented, results from the validation and design work performed on the Deep Space Network (DSN) affiliated nodes DSS-69 and DSS-17 will also be reported.