4 resultados para Star complement

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is devoted to the study of the properties of high-redsfhit galaxies in the epoch 1 < z < 3, when a substantial fraction of galaxy mass was assembled, and when the evolution of the star-formation rate density peaked. Following a multi-perspective approach and using the most recent and high-quality data available (spectra, photometry and imaging), the morphologies and the star-formation properties of high-redsfhit galaxies were investigated. Through an accurate morphological analyses, the built up of the Hubble sequence was placed around z ~ 2.5. High-redshift galaxies appear, in general, much more irregular and asymmetric than local ones. Moreover, the occurrence of morphological k-­correction is less pronounced than in the local Universe. Different star-formation rate indicators were also studied. The comparison of ultra-violet and optical based estimates, with the values derived from infra-red luminosity showed that the traditional way of addressing the dust obscuration is problematic, at high-redshifts, and new models of dust geometry and composition are required. Finally, by means of stacking techniques applied to rest-frame ultra-violet spectra of star-forming galaxies at z~2, the warm phase of galactic-scale outflows was studied. Evidence was found of escaping gas at velocities of ~ 100 km/s. Studying the correlation of inter-­stellar absorption lines equivalent widths with galaxy physical properties, the intensity of the outflow-related spectral features was proven to depend strongly on a combination of the velocity dispersion of the gas and its geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis two related arguments are investigated: - The first stages of the process of massive star formation, investigating the physical conditions and -properties of massive clumps in different evolutionary stages, and their CO depletion; - The influence that high-mass stars have on the nearby material and on the activity of star formation. I characterise the gas and dust temperature, mass and density of a sample of massive clumps, and analyse the variation of these properties from quiescent clumps, without any sign of active star formation, to clumps likely hosting a zero-age main sequence star. I briefly discuss CO depletion and recent observations of several molecular species, tracers of Hot Cores and/or shocked gas, of a subsample of these clumps. The issue of CO depletion is addressed in more detail in a larger sample consisting of the brightest sources in the ATLASGAL survey: using a radiative tranfer code I investigate how the depletion changes from dark clouds to more evolved objects, and compare its evolution to what happens in the low-mass regime. Finally, I derive the physical properties of the molecular gas in the photon-dominated region adjacent to the HII region G353.2+0.9 in the vicinity of Pismis 24, a young, massive cluster, containing some of the most massive and hottest stars known in our Galaxy. I derive the IMF of the cluster and study the star formation activity in its surroundings. Much of the data analysis is done with a Bayesian approach. Therefore, a separate chapter is dedicated to the concepts of Bayesian statistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Thesis, we study the physical properties and the cosmic evolution of AGN and their host galaxies since z∼3. Our analysis exploits samples of star forming galaxies detected with Herschel at far-IR wavelengths (from 70 up to 500 micron) in different extragalactic surveys, such as COSMOS and the deep GOODS (South and North) fields. The broad-band ancillary data available in COSMOS and the GOODS fields, allows us to implement Herschel and Spitzer photometry with multi-wavelength ancillary data. We perform a multicomponent SED-fitting decomposition to decouple the emission due to star formation from that due to AGN accretion, and to estimate both host-galaxy parameters (such as stellar mass, M* and star formation rate, SFR), and nuclear intrinsic bolometric luminosities. We use the individual estimates of AGN bolometric luminosity obtained through SED-fitting decomposition to reconstruct the redshit evolution of the AGN bolometric luminosity function since z∼3. The resulting trends are used to estimate the overall AGN accretion rate density at different cosmic epochs and to trace the first ever estimate of the AGN accretion history from an IR survey. Later on, we focus our study on the connection between AGN accretion and integrated galaxy properties. We analyse the relationships of AGN accretion with galaxy properties in the SFR-M* plane and at different cosmic epochs. Finally, we infer what is the parameter that best correlates with AGN accretion, comparing our results with previous studies and discussing their physical implications in the context of current scenarios of AGN/galaxy evolution.