12 resultados para Stabilizzazione a calce, Pre-qualifica, Mix Design, Controlli in sito, Termocamera
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Le particolari caratteristiche dei sistemi democratici multipartitici producono forti incentivi al coordinamento tra i partiti politici, che li inducono ad accordarsi per la formazione di coalizioni in due momenti politici cruciali: la competizione elettorale e la formazione dei governi. La tesi è volta a un'analisi della formazione di coalizioni pre-elettorali e degli effetti da esse prodotti sulle dinamiche di voto e sulla struttura dei governi. Si tratta di un ambito di ricerca di recente formazione, che è fondato sulla letteratura della scelta razionale. Il lavoro, diviso in due parti, vede in primo luogo un'analisi comparata relativa alla formazione delle coalizioni in 20 Stati democratici, seguita da uno studio di caso sugli effetti prodotti dalla formazione di patti elettorali in Italia.
Resumo:
Background. The surgical treatment of dysfunctional hips is a severe condition for the patient and a costly therapy for the public health. Hip resurfacing techniques seem to hold the promise of various advantages over traditional THR, with particular attention to young and active patients. Although the lesson provided in the past by many branches of engineering is that success in designing competitive products can be achieved only by predicting the possible scenario of failure, to date the understanding of the implant quality is poorly pre-clinically addressed. Thus revision is the only delayed and reliable end point for assessment. The aim of the present work was to model the musculoskeletal system so as to develop a protocol for predicting failure of hip resurfacing prosthesis. Methods. Preliminary studies validated the technique for the generation of subject specific finite element (FE) models of long bones from Computed Thomography data. The proposed protocol consisted in the numerical analysis of the prosthesis biomechanics by deterministic and statistic studies so as to assess the risk of biomechanical failure on the different operative conditions the implant might face in a population of interest during various activities of daily living. Physiological conditions were defined including the variability of the anatomy, bone densitometry, surgery uncertainties and published boundary conditions at the hip. The protocol was tested by analysing a successful design on the market and a new prototype of a resurfacing prosthesis. Results. The intrinsic accuracy of models on bone stress predictions (RMSE < 10%) was aligned to the current state of the art in this field. The accuracy of prediction on the bone-prosthesis contact mechanics was also excellent (< 0.001 mm). The sensitivity of models prediction to uncertainties on modelling parameter was found below 8.4%. The analysis of the successful design resulted in a very good agreement with published retrospective studies. The geometry optimisation of the new prototype lead to a final design with a low risk of failure. The statistical analysis confirmed the minimal risk of the optimised design over the entire population of interest. The performances of the optimised design showed a significant improvement with respect to the first prototype (+35%). Limitations. On the authors opinion the major limitation of this study is on boundary conditions. The muscular forces and the hip joint reaction were derived from the few data available in the literature, which can be considered significant but hardly representative of the entire variability of boundary conditions the implant might face over the patients population. This moved the focus of the research on modelling the musculoskeletal system; the ongoing activity is to develop subject-specific musculoskeletal models of the lower limb from medical images. Conclusions. The developed protocol was able to accurately predict known clinical outcomes when applied to a well-established device and, to support the design optimisation phase providing important information on critical characteristics of the patients when applied to a new prosthesis. The presented approach does have a relevant generality that would allow the extension of the protocol to a large set of orthopaedic scenarios with minor changes. Hence, a failure mode analysis criterion can be considered a suitable tool in developing new orthopaedic devices.
Resumo:
The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.
Resumo:
The aim of this Doctoral Thesis is to develop a genetic algorithm based optimization methods to find the best conceptual design architecture of an aero-piston-engine, for given design specifications. Nowadays, the conceptual design of turbine airplanes starts with the aircraft specifications, then the most suited turbofan or turbo propeller for the specific application is chosen. In the aeronautical piston engines field, which has been dormant for several decades, as interest shifted towards turboaircraft, new materials with increased performance and properties have opened new possibilities for development. Moreover, the engine’s modularity given by the cylinder unit, makes it possible to design a specific engine for a given application. In many real engineering problems the amount of design variables may be very high, characterized by several non-linearities needed to describe the behaviour of the phenomena. In this case the objective function has many local extremes, but the designer is usually interested in the global one. The stochastic and the evolutionary optimization techniques, such as the genetic algorithms method, may offer reliable solutions to the design problems, within acceptable computational time. The optimization algorithm developed here can be employed in the first phase of the preliminary project of an aeronautical piston engine design. It’s a mono-objective genetic algorithm, which, starting from the given design specifications, finds the engine propulsive system configuration which possesses minimum mass while satisfying the geometrical, structural and performance constraints. The algorithm reads the project specifications as input data, namely the maximum values of crankshaft and propeller shaft speed and the maximal pressure value in the combustion chamber. The design variables bounds, that describe the solution domain from the geometrical point of view, are introduced too. In the Matlab® Optimization environment the objective function to be minimized is defined as the sum of the masses of the engine propulsive components. Each individual that is generated by the genetic algorithm is the assembly of the flywheel, the vibration damper and so many pistons, connecting rods, cranks, as the number of the cylinders. The fitness is evaluated for each individual of the population, then the rules of the genetic operators are applied, such as reproduction, mutation, selection, crossover. In the reproduction step the elitist method is applied, in order to save the fittest individuals from a contingent mutation and recombination disruption, making it undamaged survive until the next generation. Finally, as the best individual is found, the optimal dimensions values of the components are saved to an Excel® file, in order to build a CAD-automatic-3D-model for each component of the propulsive system, having a direct pre-visualization of the final product, still in the engine’s preliminary project design phase. With the purpose of showing the performance of the algorithm and validating this optimization method, an actual engine is taken, as a case study: it’s the 1900 JTD Fiat Avio, 4 cylinders, 4T, Diesel. Many verifications are made on the mechanical components of the engine, in order to test their feasibility and to decide their survival through generations. A system of inequalities is used to describe the non-linear relations between the design variables, and is used for components checking for static and dynamic loads configurations. The design variables geometrical boundaries are taken from actual engines data and similar design cases. Among the many simulations run for algorithm testing, twelve of them have been chosen as representative of the distribution of the individuals. Then, as an example, for each simulation, the corresponding 3D models of the crankshaft and the connecting rod, have been automatically built. In spite of morphological differences among the component the mass is almost the same. The results show a significant mass reduction (almost 20% for the crankshaft) in comparison to the original configuration, and an acceptable robustness of the method have been shown. The algorithm here developed is shown to be a valid method for an aeronautical-piston-engine preliminary project design optimization. In particular the procedure is able to analyze quite a wide range of design solutions, rejecting the ones that cannot fulfill the feasibility design specifications. This optimization algorithm could increase the aeronautical-piston-engine development, speeding up the production rate and joining modern computation performances and technological awareness to the long lasting traditional design experiences.
Resumo:
Il CMV è l’agente patogeno più frequente dopo trapianto (Tx) di cuore determinando sia sindromi cliniche organo specifiche sia un danno immunomediato che può determinare rigetto acuto o malattia coronarica cronica (CAV). I farmaci antivirali in profilassi appaiono superiori all’approccio pre-sintomatico nel ridurre gli eventi da CMV, ma l’effetto anti-CMV dell’everolimus (EVE) in aggiunta alla profilassi antivirale non è stato ancora analizzato. SCOPO DELLO STUDIO: analizzare l’interazione tra le strategie di profilassi antivirale e l’uso di EVE o MMF nell’incidenza di eventi CMV correlati (infezione, necessità di trattamento, malattia/sindrome) nel Tx cardiaco. MATERIALI E METODI: sono stati inclusi pazienti sottoposti a Tx cardiaco e trattati con EVE o MMF e trattamento antivirale di profilassi o pre-sintomatico. L’infezione da CMV è stata monitorata con antigenemia pp65 e PCR DNA. La malattia/sindrome da CMV è stato considerato l’endpoint principale. RISULTATI: 193 pazienti (di cui 10% D+/R-) sono stati inclusi nello studio (42 in EVE e 149 in MMF). Nel complesso, l’infezione da CMV (45% vs. 79%), la necessità di trattamento antivirale (20% vs. 53%), e la malattia/sindrome da CMV (2% vs. 15%) sono risultati significativamente più bassi nel gruppo EVE che nel gruppo MMF (tutte le P<0.01). La profilassi è più efficace nel prevenire tutti gli outcomes rispetto alla strategia pre-sintomatica nei pazienti in MMF (P 0.03), ma non nei pazienti in EVE. In particolare, i pazienti in EVE e strategia pre-sintomatica hanno meno infezioni da CMV (48 vs 70%; P=0.05), e meno malattia/sindrome da CMV (0 vs. 8%; P=0.05) rispetto ai pazienti in MMF e profilassi. CONCLUSIONI: EVE riduce significamene gli eventi correlati al CMV rispetto al MMF. Il beneficio della profilassi risulta conservato solo nei pazienti trattati con MMF mentre l’EVE sembra fornire un ulteriore protezione nel ridurre gli eventi da CMV senza necessità di un estensivo trattamento antivirale.
Resumo:
I studied the effects exerted by the modifications on structures and biological activities of the compounds so obtained. I prepared peptide analogues containing unusual amino acids such as halogenated, alkylated (S)- or (R)-tryptophans, useful for the synthesis of mimetics of the endogenous opioid peptide endomorphin-1, or 2-oxo-1,3-oxazolidine-4-carboxylic acids, utilized as pseudo-prolines having a clear all-trans configuration of the preceding peptide bond. The latter gave access to a series of constrained peptidomimetics with potential interest in medicinal chemistry and in the field of the foldamers. In particular, I have dedicated much efforts to the preparation of cyclopentapeptides containing D-configured, alfa-, or beta-aminoacids, and also of cyclotetrapeptides including the retro-inverso modification. The conformational analyses confirmed that these cyclic compounds can be utilized as rigid scaffolds mimicking gamma- or beta-turns, allowing to generate new molecular and 3D diversity. Much work has been dedicated to the structural analysis in solution and in the receptor-bound state, fundamental for giving a rationale to the experimentally determined bioactivity, as well as for predicting the activity of virtual compounds (in silico pre-screen). The conformational analyses in solution has been done mostly by NMR (2D gCosy, Roesy, VT, molecular dynamics, etc.). A special section is dedicated to the prediction of plausible poses of the ligands when bound to the receptors by Molecular Docking. This computational method proved to be a powerful tool for the investigation of ligand-receptor interactions, and for the design of selective agonists and antagonists. Another practical use of cyclic peptidomimetics was the synthesis and biological evaluation of cyclic analogues of endomorphin-1 lacking in a protonable amino group. The studies revealed that a inverse type II beta-turn on D-Trp-Phe constituted the bioactive conformation.
Resumo:
Decomposition based approaches are recalled from primal and dual point of view. The possibility of building partially disaggregated reduced master problems is investigated. This extends the idea of aggregated-versus-disaggregated formulation to a gradual choice of alternative level of aggregation. Partial aggregation is applied to the linear multicommodity minimum cost flow problem. The possibility of having only partially aggregated bundles opens a wide range of alternatives with different trade-offs between the number of iterations and the required computation for solving it. This trade-off is explored for several sets of instances and the results are compared with the ones obtained by directly solving the natural node-arc formulation. An iterative solution process to the route assignment problem is proposed, based on the well-known Frank Wolfe algorithm. In order to provide a first feasible solution to the Frank Wolfe algorithm, a linear multicommodity min-cost flow problem is solved to optimality by using the decomposition techniques mentioned above. Solutions of this problem are useful for network orientation and design, especially in relation with public transportation systems as the Personal Rapid Transit. A single-commodity robust network design problem is addressed. In this, an undirected graph with edge costs is given together with a discrete set of balance matrices, representing different supply/demand scenarios. The goal is to determine the minimum cost installation of capacities on the edges such that the flow exchange is feasible for every scenario. A set of new instances that are computationally hard for the natural flow formulation are solved by means of a new heuristic algorithm. Finally, an efficient decomposition-based heuristic approach for a large scale stochastic unit commitment problem is presented. The addressed real-world stochastic problem employs at its core a deterministic unit commitment planning model developed by the California Independent System Operator (ISO).
Resumo:
La ricerca si focalizza sul rapporto tra tecnologie abilitanti e corpo umano. La miniaturizzazione delle tecnologie, unita alla loro maggiore diffusione negli ambienti, porta ad interrogarsi sull’efficacia dell’integrazione di esse con corpo e attività ad esso connesse. Il contesto problematico della ricerca riguarda i dispositivi indossabili e il progetto di soluzioni destinate a risolvere inediti bisogni o potenziare i sensi umani. La letteratura scientifica e i casi studio circoscrivono il piede come efficace piattaforma per la sperimentazione di interfacce aptiche di comunicazione uomo/macchina, atte a connettere il corpo con informazioni referenziate all’ambiente. Il piede, elemento motorio duplice e simmetrico, ha un’elevata qualità percettiva ed è morfologicamente adeguato all’applicazione di tecnologie emergenti. La posizione di soglia, tra spazio e corpo, consente la raccolta di stimoli da entrambe le aree. La bibliografia evidenzia quanto la pressione, rispetto alla vibrazione, sia preferibile nella comunicazione aptica in quanto componente naturale dei linguaggi relazionali del corpo. Dall’analisi multidisciplinare emerge infine l’opportunità di sviluppo del ritmo come componente strutturale dei messaggi. I legami relazionali tra ritmo, corpo e comportamenti umani sono evidenti in molteplici meccanismi: trascinamento ritmico, mimesi ritmica, sincronia. La messa in relazione di piede, pressione e ritmo diventa affordance dello spazio, capace di suggerire, enfatizzare o attivare determinati comportamenti. L’unione di questi elementi è qui definita ritmica podotattile ed esplicitata nella tesi della descrizione delle sue caratteristiche, dalla circoscrizione di campi e azioni applicative e dalla raccolta dati sui test effettuati con i prototipi costruiti. Le analisi quantitative e qualitative dei dati di lettura del movimento e delle emozioni dimostrano quanto l’utilizzo di un linguaggio ritmico aptico nel piede esprima elevate potenzialità di integrazione con il corpo nel rispetto del comfort e dell’equilibrio attentivo nei flussi di azione preesistenti. I risultati aprono riflessioni su nuove applicazioni progettuali nel campo museale, lavorativo e urbano.
Resumo:
In the framework of a global transition to a low-carbon energy mix, the interest in advanced nuclear Small Modular Reactors (SMRs) has been growing at the international level. Due to the high level of maturity reached by Severe Accident Codes for currently operating rectors, their applicability to advanced SMRs is starting to be studied. Within the present work of thesis and in the framework of a collaboration between ENEA, UNIBO and IRSN, an ASTEC code model of a generic IRIS reactor has been developed. The simulation of a DBA sequence involving the operation of all the passive safety systems of the generic IRIS has been carried out to investigate the code model capability in the prediction of the thermal-hydraulics characterizing an integral SMR adopting a passive mitigation strategy. The following simulation of 4 BDBAs sequences explores the applicability of Severe Accident Codes to advance SMRs in beyond-design and core-degradation conditions. The uncertainty affecting a code simulation can be estimated by using the method of Input Uncertainty Propagation, whose application has been realized through the RAVEN-ASTEC coupling and implementation on an HPC platform. This probabilistic methodology has been employed in a study of the uncertainty affecting the passive safety system operation in the DBA simulation of ASTEC, providing a further characterization of the thermal-hydraulics of this sequence. The application of the Uncertainty Quantification method to early core-melt phenomena has been investigated in the framework of a BEPU analysis of the ASTEC simulation of the QUENCH test-6 experiment. A possible solution to the encountered challenges has been proposed through the application of a Limit Surface search algorithm.
Resumo:
La ricerca indaga il rapporto tra Design e Innovazione Responsabile calandolo all’interno della relazione tra territorio e pratiche collaborative guidate dal design, ma anche legate al patrimonio culturale immateriale e a un sistema di conoscenza a quintupla elica. La necessità emergente di cura del futuro porta a rivedere il contesto del territorio come campo strumentale per la trasformazione degli individui e della comunità e a domandarsi in che modo il design possa supportare questo cambiamento, abilitando la produzione di conoscenza collaborativa. La ricerca parte dal dimostrare come il modello di innovazione recentemente proposto dalla Comunità Europea attraverso il concetto di Responsible Research Innovation (RRI), poi ripreso nella nozione di Responsible Innovation (RI), sia un campo aperto e responsivo: se integrato con altre discipline, in particolare con il design, può supportare lo sviluppo di processi, politiche, prodotti, servizi e comportamenti che rispettino la relazione tra società, ambiente, identità individuale e collettiva e i ritmi ad essi connessi. Partendo dal contesto sopra descritto, ci si chiede come il design e il designer possano integrare le dimensioni RI nei processi di progettazione, per innovare in modo collaborativo i territori. Si individua quindi nell’Advanced Design la metodologia che, grazie alla sua natura anticipatrice, collaborativa, trasformativa, riesce a coniugarsi virtuosamente con l’approccio RI e supportare il cambiamento in atto. L’intersezione di questi elementi porta alla creazione del Modello Advanced Design per/con l’Innovazione Responsabile (ADIR): un sistema multidimensionale per gruppi di innovazione (quintupla elica) che hanno l’obiettivo di rigenerare in modo collaborativo e inclusivo i territori. L’esperienza sul campo ha confermato come la struttura del modello, formata da un corpus di semi-lavorati, permetta di creare un proprio ritmo, una compenetrazione tra azioni e forme progettuali volti a mantenere il senso di comunità e il coinvolgimento degli attori, a creare relazioni, a sviluppare una trasformazione continua.
Resumo:
There is a constant need to improve the infrastructure's quality and build new infrastructure with better designs. The risk of accidents and noise can be reduced by improving the surface properties of the pavement. The amount of raw material used in road construction is worrisome, as it is finite and due the waste produced. Environmentally-friendly roads construction, recycling might be the main way. Projects must be more environmentally-friendly, safer, and quieter. Is it possible to develop a safer, quieter and environmentally-friendly pavement surfaces? The hypothesis is: is it possible to create an Artificial Engineered Aggregate (AEA) using waste materials and providing it with a specific shape that can help to reduce the noise and increase the friction? The thesis presents the development of an AEA and its application as a partial replacement in microsurfacing samples. The 1st introduces the topic and provides the aim and objectives of the thesis. The 2nd chapter – presents a pavement solution to noise and friction review. The 3rd chapter - developing a mix design for a geopolymer mortar that used basalt powder. The 4th chapter is presented the physical-mechanical evaluation of the AEA. The 5th chapter evaluates the use of this aggregate in microsurfacing regarding the texture parameters. The 6th chapter, those parameter are used as an input to SPERoN® model, simulating their noise behavior of these solutions. The findings from this thesis are presented as partial conclusions in each chapter, to be closed in a final chapter. The main findings are: the DoE provided the tool to select the appropriate geopolymer mortar mix design; AEA had interesting results regarding the physical-mechanical tests; AEA in partial replacement of the natural aggregates in microsurfacing mixture proved feasible. The texture parameters and noise levels obtained in AEA samples demonstrate that it can serve as a HIFASP
Resumo:
Due to the interest of general public and the industrial stakeholders, new challenges and demands are rising in aircraft design. The sustainability is taking its place amongst more traditional design factors, such as safety, performances and costs. Sustainability is both environmental and economic, and among the factors contributing to economic sustainability, there is also passengers' comfort. In order to win these two challenges, they must be considered in the early stages of aircraft design. In this work, the focus is on emissions generation and acoustic comfort, aiming at reducing pollution and internal noise in the preliminary design phases. These results can be achieved with both unconventional aircraft configurations and advanced materials, which also require new numerical formulations to be assessed. In this research, on one hand, the windowless configuration for a commercial aircraft is studied with traditional preliminary design methods in order to achieve a weight reduction and consequently a return in terms of emissions and costs. On the other hand, a new class of insulating materials, the acoustic metamaterials, is applied on the passenger cabin lining panels. The complex kinematic behaviour of these advanced materials is studied through the Carrera's Unified Formulation, that enhances a wide class of powerful refined shell and beam theories with a unique formulation.