4 resultados para Spleen – abnormalities

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Portal pressure is measured invasively as Hepatic Venous Pressure Gradient (HVPG) in the angiography room. Liver stiffness measured by Fibroscan was shown to correlate with HVPG values below 12 mmHg. This is not surprising, since in cirrhosis the increase of portal pressure is not directly linked with liver fibrosis and consequently to liver stiffness. We hypothesized that, given the spleen’s privileged location upstream to the whole portal system, splenic stiffness could provide relevant information about portal pressure. Aim of the study was to assess the relationship between liver and spleen stiffness measured by Virtual Touch™ (ARFI) and HVPG in cirrhotic patients. METHODS. 40 consecutive patients (30 males, mean age 62y, mean BMI=26, mean Child-Pugh A6, mean platelet count=92.000/mmc, 19 HCV+, 7 with ascites) underwent to ARFI stiffness measurement (10 valid measurements in right liver lobe both surface and centre, left lobe and 20 in the spleen) and HPVG, blindly to each other. Median ARFI values of 10 samplings on every liver area and of 20 samplings on spleen were calculated. RESULTS. Stiffness could be easily measured in all patients with ARFI, resulting a mean of 2,61±0,76, 2,5±0,62 and 2,55±0,66 m/sec in the liver areas and 3.3±0,5 m/s in the spleen. Median HPVG was 14 mmHg (range 5-27); 28 patients showed values ≥10 mmHg. A positive significant correlation was found between spleen stiffness and HPVG values (r=0.744, p<0.001). No significant correlation was found between all liver stiffness and HVPG (p>0,05). AUROC was calculated to test spleen stiffness ability in discriminating patients with HVPG ≥10. AUROC = 0.911 was obtained, with sensitivity of 69% and specificity of 91% at a cut-off of 3.26 m/s. CONCLUSION. Spleen stiffness measurement with ARFI correlates with HVPG in patients with cirrhosis, with a potential of identifying patients with clinically significant portal hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a rare and severe neurodevelopmental disease that mostly affects girls who are heterozygous for mutations in the X-linked CDKL5 gene. The lack of CDKL5 protein expression or function leads to the appearance of numerous clinical features, including early-onset seizures, marked hypotonia, autistic features, and severe neurodevelopmental impairment. Mouse models of CDD, Cdkl5 KO mice, exhibit several behavioral phenotypes that mimic CDD features, such as impaired learning and memory, social interaction, and motor coordination. CDD symptomatology, along with the high CDKL5 expression levels in the brain, underscores the critical role that CDKL5 plays in proper brain development and function. Nevertheless, the improvement of the clinical overview of CDD in the past few years has defined a more detailed phenotypic spectrum; this includes very common alterations in peripheral organ and tissue function, such as gastrointestinal problems, irregular breathing, hypotonia, and scoliosis, suggesting that CDKL5 deficiency compromises not only CNS function but also that of other organs/tissues. Here we report, for the first time, that a mouse model of CDD, the heterozygous Cdkl5 KO (Cdkl5 +/-) female mouse, exhibits cardiac functional and structural abnormalities. The mice also showed QTc prolongation and increased heart rate. These changes correlate with a marked decrease in parasympathetic activity to the heart and in the expression of the Scn5a and Hcn4 voltage-gated channels. Moreover, the Cdkl5 +/- heart shows typical signs of heart aging, including increased fibrosis, mitochondrial dysfunctions, and increased ROS production. Overall, our study not only contributes to the understanding of the role of CDKL5 in heart structure/function but also documents a novel preclinical phenotype for future therapeutic investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary Myelofibrosis (PMF) is the end-stage of Philadelphia-negative myeloproliferative neoplasms (MPN) and is characterized by fibrosis and hematopoietic failure in bone marrow, with a consequential migration of the malignant hematopoietic stem cells (HSC) in the spleen where they induce ineffective haematopoiesis. To date, available therapies for PMF are still palliative and do not halt the progression of this neoplasm. During my PhD years, our laboratory investigated the factors promoting the onset and progression of PMF. In our PMF mice model, Gata1low mouse, we studied the role of the interaction of HSC niche with megakaryocytes and HSC localization in the bone marrow during their division and cycle. We observed the inflammation and the main protagonists (LNC-2, CXCL1, and TGF-β) of this process and how their level changes before and after the onset of the disease. We investigated the different megakaryocyte populations in the fibrotic environment in different organs (lung and bone marrow) to define the megakaryocytes implicated in this process. In human samples, we described different ultrastructural abnormalities of megakaryocytes from the bone marrow and the spleen, identifying a possible different metabolism in those two populations. In conclusion, we highlighted the intricated crosstalk between the megakaryocytes, the niche and HSC in PMF. We identified megakaryocytes-dependent cytokines altering the homeostasis of the niche and HSC. Those cytokines could be used as alternative therapeutic targets. Furthermore, we observed different megakaryocytic populations in different organs, providing new prospective on the role of megakaryocytes in different microenvironments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary myelofibrosis is a clonal hematopoietic disorder characterized by marked degrees of systemic inflammation. The release of pro-inflammatory factors by clonal hematopoietic cell populations cause the remodeling of a specialized microenvironment, defined niche, in which the hematopoietic stem cells reside. The main source of pro-inflammatory cytokines is represented by malignant megakaryocytes. The bone marrow and spleen from myelofibrosis patients, as well as those from the Gata1low mouse model of the disease, contain increased number of abnormal megakaryocytes. These cells express on their surface high levels of the adhesion receptor P-selectin that, by triggering a pathological megakaryocyte-neutrophil emperipolesis, lead to increased bioavailability of TGF-β1 in the microenvironment and disease progression. Gata1low mice develop with age a phenotype similar to that of patients with myelofibrosis. We previously demonstrated that deletion of the P-selectin gene in Gata1low mice prevented the development of the myelofibrotic phenotype in these mice. In the current study, we tested the hypothesis that pharmacological inhibition of P-selectin may rescue the fibrotic phenotype of Gata1low mice. To test this hypothesis, we have investigated the phenotype expressed by old Gata1low mice treated with the anti-mouse monoclonal antibody against P-selectin RB40.34, alone or in combination with the JAK2 inhibitor Ruxolitinib. The results showed that the combined therapy normalized the phenotype of Gata1low mice with limited toxicity by reducing fibrosis, TGF-β1 and CXCL1 content in the BM and spleen and by restoring hematopoiesis in the bone marrow and the normal architecture of the spleen. In conclusion, pharmacological inhibition of P-selectin was effective in targeting malignant megakaryocytes and the microenvironmental abnormalities that affect the hematopoietic stem cell compartment in this model. These results suggest that P-selectin and JAK1/2 inhibitors in combination may represent a valid therapeutic option for patients with myelofibrosis.