3 resultados para Spin systems

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular recognition and self-assembly represent fundamental issues for the construction of supramolecular systems, structures in which the components are held together through non-covalent interactions. The study of host-guest complexes and mechanical interlocked molecules, important examples in this field, is necessary in order to characterize self-assembly processes, achieve more control over the molecular organization and develop sophisticated structures by using properly designed building blocks. The introduction of paramagnetic species, or spin labelling, represents an attractive opportunity that allows their detection and characterization by the Electron Spin Resonance spectroscopy, a valuable technique that provides additional information to those obtained by traditional methods. In this Thesis, recent progresses in the design and the synthesis of new paramagnetic host-guest complexes and rotaxanes characterized by the presence of nitroxide radicals and their investigation by ESR spectroscopy are reported. In Chapter 1 a brief overview of the principal concepts of supramolecular chemistry, the spin labelling approach and the development of ESR methods applied to paramagnetic systems are described. Chapter 2 and 3 are focused on the introduction of radicals in macrocycles as Cucurbiturils and Pillar[n]arenes, due to the interesting binding properties and the potential employment in rotaxanes, in order to investigate their structures and recognition properties. Chapter 4 deals with one of the most studied mechanical interlocked molecules, the bistable [2]rotaxane reported by Stoddart and Heath based on the ciclobis (paraquat-p-phenylene) CBPQT4+, that represents a well known example of molecular switch driven by external stimuli. The spin labelling of analogous architectures allows the monitoring by ESR spectroscopy of the switch mechanism involving the ring compound by tuning the spin exchange interaction. Finally, Chapter 5 contains the experimental procedures used for the synthesis of some of the compounds described in Chapter 2-4.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work I reported recent results in the field of Statistical Mechanics of Equilibrium, and in particular in Spin Glass models and Monomer Dimer models . We start giving the mathematical background and the general formalism for Spin (Disordered) Models with some of their applications to physical and mathematical problems. Next we move on general aspects of the theory of spin glasses, in particular to the Sherrington-Kirkpatrick model which is of fundamental interest for the work. In Chapter 3, we introduce the Multi-species Sherrington-Kirkpatrick model (MSK), we prove the existence of the thermodynamical limit and the Guerra's Bound for the quenched pressure together with a detailed analysis of the annealed and the replica symmetric regime. The result is a multidimensional generalization of the Parisi's theory. Finally we brie y illustrate the strategy of the Panchenko's proof of the lower bound. In Chapter 4 we discuss the Aizenmann-Contucci and the Ghirlanda-Guerra identities for a wide class of Spin Glass models. As an example of application, we discuss the role of these identities in the proof of the lower bound. In Chapter 5 we introduce the basic mathematical formalism of Monomer Dimer models. We introduce a Gaussian representation of the partition function that will be fundamental in the rest of the work. In Chapter 6, we introduce an interacting Monomer-Dimer model. Its exact solution is derived and a detailed study of its analytical properties and related physical quantities is performed. In Chapter 7, we introduce a quenched randomness in the Monomer Dimer model and show that, under suitable conditions the pressure is a self averaging quantity. The main result is that, if we consider randomness only in the monomer activity, the model is exactly solvable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we will investigate some properties of one-dimensional quantum systems. From a theoretical point of view quantum models in one dimension are particularly interesting because they are strongly interacting, since particles cannot avoid each other in their motion, and you we can never ignore collisions. Yet, integrable models often generate new and non-trivial solutions, which could not be found perturbatively. In this dissertation we shall focus on two important aspects of integrable one- dimensional models: Their entanglement properties at equilibrium and their dynamical correlators after a quantum quench. The first part of the thesis will be therefore devoted to the study of the entanglement entropy in one- dimensional integrable systems, with a special focus on the XYZ spin-1/2 chain, which, in addition to being integrable, is also an interacting model. We will derive its Renyi entropies in the thermodynamic limit and its behaviour in different phases and for different values of the mass-gap will be analysed. In the second part of the thesis we will instead study the dynamics of correlators after a quantum quench , which represent a powerful tool to measure how perturbations and signals propagate through a quantum chain. The emphasis will be on the Transverse Field Ising Chain and the O(3) non-linear sigma model, which will be both studied by means of a semi-classical approach. Moreover in the last chapter we will demonstrate a general result about the dynamics of correlation functions of local observables after a quantum quench in integrable systems. In particular we will show that if there are not long-range interactions in the final Hamiltonian, then the dynamics of the model (non equal- time correlations) is described by the same statistical ensemble that describes its statical properties (equal-time correlations).