6 resultados para Spherical Geometry
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Every seismic event produces seismic waves which travel throughout the Earth. Seismology is the science of interpreting measurements to derive information about the structure of the Earth. Seismic tomography is the most powerful tool for determination of 3D structure of deep Earth's interiors. Tomographic models obtained at the global and regional scales are an underlying tool for determination of geodynamical state of the Earth, showing evident correlation with other geophysical and geological characteristics. The global tomographic images of the Earth can be written as a linear combinations of basis functions from a specifically chosen set, defining the model parameterization. A number of different parameterizations are commonly seen in literature: seismic velocities in the Earth have been expressed, for example, as combinations of spherical harmonics or by means of the simpler characteristic functions of discrete cells. With this work we are interested to focus our attention on this aspect, evaluating a new type of parameterization, performed by means of wavelet functions. It is known from the classical Fourier theory that a signal can be expressed as the sum of a, possibly infinite, series of sines and cosines. This sum is often referred as a Fourier expansion. The big disadvantage of a Fourier expansion is that it has only frequency resolution and no time resolution. The Wavelet Analysis (or Wavelet Transform) is probably the most recent solution to overcome the shortcomings of Fourier analysis. The fundamental idea behind this innovative analysis is to study signal according to scale. Wavelets, in fact, are mathematical functions that cut up data into different frequency components, and then study each component with resolution matched to its scale, so they are especially useful in the analysis of non stationary process that contains multi-scale features, discontinuities and sharp strike. Wavelets are essentially used in two ways when they are applied in geophysical process or signals studies: 1) as a basis for representation or characterization of process; 2) as an integration kernel for analysis to extract information about the process. These two types of applications of wavelets in geophysical field, are object of study of this work. At the beginning we use the wavelets as basis to represent and resolve the Tomographic Inverse Problem. After a briefly introduction to seismic tomography theory, we assess the power of wavelet analysis in the representation of two different type of synthetic models; then we apply it to real data, obtaining surface wave phase velocity maps and evaluating its abilities by means of comparison with an other type of parametrization (i.e., block parametrization). For the second type of wavelet application we analyze the ability of Continuous Wavelet Transform in the spectral analysis, starting again with some synthetic tests to evaluate its sensibility and capability and then apply the same analysis to real data to obtain Local Correlation Maps between different model at same depth or between different profiles of the same model.
Resumo:
The present thesis is divided into two main research areas: Classical Cosmology and (Loop) Quantum Gravity. The first part concerns cosmological models with one phantom and one scalar field, that provide the `super-accelerated' scenario not excluded by observations, thus exploring alternatives to the standard LambdaCDM scenario. The second part concerns the spinfoam approach to (Loop) Quantum Gravity, which is an attempt to provide a `sum-over-histories' formulation of gravitational quantum transition amplitudes. The research here presented focuses on the face amplitude of a generic spinfoam model for Quantum Gravity.
Resumo:
In this study new tomographic models of Colombia were calculated. I used the seismicity recorded by the Colombian seismic network during the period 2006-2009. In this time period, the improvement of the seismic network yields more stable hypocentral results with respect to older data set and allows to compute new 3D Vp and Vp/Vs models. The final dataset consists of 10813 P- and 8614 S-arrival times associated to 1405 earthquakes. Tests with synthetic data and resolution analysis indicate that velocity models are well constrained in central, western and southwestern Colombia to a depth of 160 km; the resolution is poor in the northern Colombia and close to Venezuela due to a lack of seismic stations and seismicity. The tomographic models and the relocated seismicity indicate the existence of E-SE subducting Nazca lithosphere beneath central and southern Colombia. The North-South changes in Wadati-Benioff zone, Vp & Vp/Vs pattern and volcanism, show that the downgoing plate is segmented by slab tears E-W directed, suggesting the presence of three sectors. Earthquakes in the northernmost sector represent most of the Colombian seimicity and concentrated on 100-170 km depth interval, beneath the Eastern Cordillera. Here a massive dehydration is inferred, resulting from a delay in the eclogitization of a thickened oceanic crust in a flat-subduction geometry. In this sector a cluster of intermediate-depth seismicity (Bucaramanga Nest) is present beneath the elbow of the Eastern Cordillera, interpreted as the result of massive and highly localized dehydration phenomenon caused by a hyper-hydrous oceanic crust. The central and southern sectors, although different in Vp pattern show, conversely, a continuous, steep and more homogeneous Wadati-Benioff zone with overlying volcanic areas. Here a "normalthickened" oceanic crust is inferred, allowing for a gradual and continuous metamorphic reactions to take place with depth, enabling the fluid migration towards the mantle wedge.
Resumo:
This doctoral dissertation presents a new method to asses the influence of clearancein the kinematic pairs on the configuration of planar and spatial mechanisms. The subject has been widely investigated in both past and present scientific literature, and is approached in different ways: a static/kinetostatic way, which looks for the clearance take-up due to the external loads on the mechanism; a probabilistic way, which expresses clearance-due displacements using probability density functions; a dynamic way, which evaluates dynamic effects like the actual forces in the pairs caused by impacts, or the consequent vibrations. This dissertation presents a new method to approach the problem of clearance. The problem is studied from a purely kinematic perspective. With reference to a given mechanism configuration, the pose (position and orientation) error of the mechanism link of interest is expressed as a vector function of the degrees of freedom introduced in each pair by clearance: the presence of clearance in a kinematic pair, in facts, causes the actual pair to have more degrees of freedom than the theoretical clearance-free one. The clearance-due degrees of freedom are bounded by the pair geometry. A proper modelling of clearance-affected pairs allows expressing such bounding through analytical functions. It is then possible to study the problem as a maximization problem, where a continuous function (the pose error of the link of interest) subject to some constraints (the analytical functions bounding clearance- due degrees of freedom) has to be maximize. Revolute, prismatic, cylindrical, and spherical clearance-affected pairs have been analytically modelled; with reference to mechanisms involving such pairs, the solution to the maximization problem has been obtained in a closed form.
Resumo:
A flexure hinge is a flexible connector that can provide a limited rotational motion between two rigid parts by means of material deformation. These connectors can be used to substitute traditional kinematic pairs (like bearing couplings) in rigid-body mechanisms. When compared to their rigid-body counterpart, flexure hinges are characterized by reduced weight, absence of backlash and friction, part-count reduction, but restricted range of motion. There are several types of flexure hinges in the literature that have been studied and characterized for different applications. In our study, we have introduced new types of flexures with curved structures i.e. circularly curved-beam flexures and spherical flexures. These flexures have been utilized for both planar applications (e.g. articulated robotic fingers) and spatial applications (e.g. spherical compliant mechanisms). We have derived closed-form compliance equations for both circularly curved-beam flexures and spherical flexures. Each element of the spatial compliance matrix is analytically computed as a function of hinge dimensions and employed material. The theoretical model is then validated by comparing analytical data with the results obtained through Finite Element Analysis. A case study is also presented for each class of flexures, concerning the potential applications in the optimal design of planar and spatial compliant mechanisms. Each case study is followed by comparing the performance of these novel flexures with the performance of commonly used geometries in terms of principle compliance factors, parasitic motions and maximum stress demands. Furthermore, we have extended our study to the design and analysis of serial and parallel compliant mechanisms, where the proposed flexures have been employed to achieve spatial motions e.g. compliant spherical joints.