11 resultados para Spectral energy distribution.

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quasars and AGN play an important role in many aspects of the modern cosmology. Of particular interest is the issue of the interplay between AGN activity and formation and evolution of galaxies and structures. Studies on nearby galaxies revealed that most (and possibly all) galaxy nuclei contain a super-massive black hole (SMBH) and that between a third and half of them are showing some evidence of activity (Kormendy and Richstone, 1995). The discovery of a tight relation between black holes mass and velocity dispersion of their host galaxy suggests that the evolution of the growth of SMBH and their host galaxy are linked together. In this context, studying the evolution of AGN, through the luminosity function (LF), is fundamental to constrain the theories of galaxy and SMBH formation and evolution. Recently, many theories have been developed to describe physical processes possibly responsible of a common formation scenario for galaxies and their central black hole (Volonteri et al., 2003; Springel et al., 2005a; Vittorini et al., 2005; Hopkins et al., 2006a) and an increasing number of observations in different bands are focused on collecting larger and larger quasar samples. Many issues remain however not yet fully understood. In the context of the VVDS (VIMOS-VLT Deep Survey), we collected and studied an unbiased sample of spectroscopically selected faint type-1 AGN with a unique and straightforward selection function. Indeed, the VVDS is a large, purely magnitude limited spectroscopic survey of faint objects, free of any morphological and/or color preselection. We studied the statistical properties of this sample and its evolution up to redshift z 4. Because of the contamination of the AGN light by their host galaxies at the faint magnitudes explored by our sample, we observed that a significant fraction of AGN in our sample would be missed by the UV excess and morphological criteria usually adopted for the pre-selection of optical QSO candidates. If not properly taken into account, this failure in selecting particular sub-classes of AGN could, in principle, affect some of the conclusions drawn from samples of AGN based on these selection criteria. The absence of any pre-selection in the VVDS leads us to have a very complete sample of AGN, including also objects with unusual colors and continuum shape. The VVDS AGN sample shows in fact redder colors than those expected by comparing it, for example, with the color track derived from the SDSS composite spectrum. In particular, the faintest objects have on average redder colors than the brightest ones. This can be attributed to both a large fraction of dust-reddened objects and a significant contamination from the host galaxy. We have tested these possibilities by examining the global spectral energy distribution of each object using, in addition to the U, B, V, R and I-band magnitudes, also the UV-Galex and the IR-Spitzer bands, and fitting it with a combination of AGN and galaxy emission, allowing also for the possibility of extinction of the AGN flux. We found that for 44% of our objects the contamination from the host galaxy is not negligible and this fraction decreases to 21% if we restrict the analysis to a bright subsample (M1450 <-22.15). Our estimated integral surface density at IAB < 24.0 is 500 AGN per square degree, which represents the highest surface density of a spectroscopically confirmed sample of optically selected AGN. We derived the luminosity function in B-band for 1.0 < z < 3.6 using the 1/Vmax estimator. Our data, more than one magnitude fainter than previous optical surveys, allow us to constrain the faint part of the luminosity function up to high redshift. A comparison of our data with the 2dF sample at low redshift (1 < z < 2.1) shows that the VDDS data can not be well fitted with the pure luminosity evolution (PLE) models derived by previous optically selected samples. Qualitatively, this appears to be due to the fact that our data suggest the presence of an excess of faint objects at low redshift (1.0 < z < 1.5) with respect to these models. By combining our faint VVDS sample with the large sample of bright AGN extracted from the SDSS DR3 (Richards et al., 2006b) and testing a number of different evolutionary models, we find that the model which better represents the combined luminosity functions, over a wide range of redshift and luminosity, is a luminosity dependent density evolution (LDDE) model, similar to those derived from the major Xsurveys. Such a parameterization allows the redshift of the AGN density peak to change as a function of luminosity, thus fitting the excess of faint AGN that we find at 1.0 < z < 1.5. On the basis of this model we find, for the first time from the analysis of optically selected samples, that the peak of the AGN space density shifts significantly towards lower redshift going to lower luminosity objects. The position of this peak moves from z 2.0 for MB <-26.0 to z 0.65 for -22< MB <-20. This result, already found in a number of X-ray selected samples of AGN, is consistent with a scenario of “AGN cosmic downsizing”, in which the density of more luminous AGN, possibly associated to more massive black holes, peaks earlier in the history of the Universe (i.e. at higher redshift), than that of low luminosity ones, which reaches its maximum later (i.e. at lower redshift). This behavior has since long been claimed to be present in elliptical galaxies and it is not easy to reproduce it in the hierarchical cosmogonic scenario, where more massive Dark Matter Halos (DMH) form on average later by merging of less massive halos.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thanks to the Chandra and XMM–Newton surveys, the hard X-ray sky is now probed down to a flux limit where the bulk of the X-ray background is almost completely resolved into discrete sources, at least in the 2–8 keV band. Extensive programs of multiwavelength follow-up observations showed that the large majority of hard X–ray selected sources are identified with Active Galactic Nuclei (AGN) spanning a broad range of redshifts, luminosities and optical properties. A sizable fraction of relatively luminous X-ray sources hosting an active, presumably obscured, nucleus would not have been easily recognized as such on the basis of optical observations because characterized by “peculiar” optical properties. In my PhD thesis, I will focus the attention on the nature of two classes of hard X-ray selected “elusive” sources: those characterized by high X-ray-to-optical flux ratios and red optical-to-near-infrared colors, a fraction of which associated with Type 2 quasars, and the X-ray bright optically normal galaxies, also known as XBONGs. In order to characterize the properties of these classes of elusive AGN, the datasets of several deep and large-area surveys have been fully exploited. The first class of “elusive” sources is characterized by X-ray-to-optical flux ratios (X/O) significantly higher than what is generally observed from unobscured quasars and Seyfert galaxies. The properties of well defined samples of high X/O sources detected at bright X–ray fluxes suggest that X/O selection is highly efficient in sampling high–redshift obscured quasars. At the limits of deep Chandra surveys (∼10−16 erg cm−2 s−1), high X/O sources are generally characterized by extremely faint optical magnitudes, hence their spectroscopic identification is hardly feasible even with the largest telescopes. In this framework, a detailed investigation of their X-ray properties may provide useful information on the nature of this important component of the X-ray source population. The X-ray data of the deepest X-ray observations ever performed, the Chandra deep fields, allows us to characterize the average X-ray properties of the high X/O population. The results of spectral analysis clearly indicate that the high X/O sources represent the most obscured component of the X–ray background. Their spectra are harder (G ∼ 1) than any other class of sources in the deep fields and also of the XRB spectrum (G ≈ 1.4). In order to better understand the AGN physics and evolution, a much better knowledge of the redshift, luminosity and spectral energy distributions (SEDs) of elusive AGN is of paramount importance. The recent COSMOS survey provides the necessary multiwavelength database to characterize the SEDs of a statistically robust sample of obscured sources. The combination of high X/O and red-colors offers a powerful tool to select obscured luminous objects at high redshift. A large sample of X-ray emitting extremely red objects (R−K >5) has been collected and their optical-infrared properties have been studied. In particular, using an appropriate SED fitting procedure, the nuclear and the host galaxy components have been deconvolved over a large range of wavelengths and ptical nuclear extinctions, black hole masses and Eddington ratios have been estimated. It is important to remark that the combination of hard X-ray selection and extreme red colors is highly efficient in picking up highly obscured, luminous sources at high redshift. Although the XBONGs do not present a new source population, the interest on the nature of these sources has gained a renewed attention after the discovery of several examples from recent Chandra and XMM–Newton surveys. Even though several possibilities were proposed in recent literature to explain why a relatively luminous (LX = 1042 − 1043erg s−1) hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the very nature of XBONGs is still subject of debate. Good-quality photometric near-infrared data (ISAAC/VLT) of 4 low-redshift XBONGs from the HELLAS2XMMsurvey have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique. In two out of the four sources, the presence of a nuclear weak component hosted by a bright galaxy has been revealed. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4p) at the nuclear source, may explain the lack of optical emission lines. A weak nucleus not able to produce suffcient UV photons may provide an alternative or additional explanation. On the basis of an admittedly small sample, we conclude that XBONGs constitute a mixed bag rather than a new source population. When the presence of a nucleus is revealed, it turns out to be mildly absorbed and hosted by a bright galaxy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Zero Degree Calorimeter (ZDC) of the ATLAS experiment at CERN is placed in the TAN of the LHC collider, covering the pseudorapidity region higher than 8.3. It is composed by 2 calorimeters, each one longitudinally segmented in 4 modules, located at 140 m from the IP exactly on the beam axis. The ZDC can detect neutral particles during pp collisions and it is a tool for diffractive physics. Here we present results on the forward photon energy distribution obtained using p-p collision data at sqrt{s} = 7 TeV. First the pi0 reconstruction will be used for the detector calibration with photons, then we will show results on the forward photon energy distribution in p-p collisions and the same distribution, but obtained using MC generators. Finally a comparison between data and MC will be shown.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studies on soil organic carbon (SOC) sequestration in perennial energy crops are available for North-Central Europe, while there is insufficient information for Southern Europe. This research was conducted in the Po Valley, a Mediterranean-temperate zone characterised by low SOC levels, due to intensive management. The aim was to assess the factors influencing SOC sequestration and its distribution through depth and within soil fractions, after a 9-year old conversion from two annual systems to Miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax). The 13C natural abundance was used to evaluate the amount of SOC in annual and perennial species, and determine the percentage of carbon derived from perennial crops. SOC was significantly higher under perennial species, especially in the topsoil (0-0.15 m). After 9 years, the amount of C derived from Miscanthus was 18.7 Mg ha-1, mostly stored at 0-0.15 m, whereas the amount of C derived from giant reed was 34.7 Mg ha-1, evenly distributed through layers. Physical soil fractionation was combined with 13C abundance analysis. C derived from perennial crops was mainly found in macroaggregates. Under giant reed, more newly derived-carbon was stored in microaggregates and mineral fraction than under Miscanthus. A molecular approach based on denaturing gradient gel electrophoresis (DGGE) allowed to evaluate changes on microbial community, after the introduction of perennial crops. Functional aspects were investigated by determining relevant soil enzymes (β-glucosidase, urease, alkaline phosphatase). Perennial crops positively stimulated these enzymes, especially in the topsoil. DGGE profiles revealed that community richness was higher in perennial crops; Shannon index of diversity was influenced only by depth. In conclusion, Miscanthus and giant reed represent a sustainable choice for the recovery of soils exhausted by intensive management, also in Mediterranean conditions and this is relevant mainly because this geographical area is notoriously characterised by a rapid turnover of SOC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seyfert galaxies are the closest active galactic nuclei. As such, we can use them to test the physical properties of the entire class of objects. To investigate their general properties, I took advantage of different methods of data analysis. In particular I used three different samples of objects, that, despite frequent overlaps, have been chosen to best tackle different topics: the heterogeneous BeppoS AX sample was thought to be optimized to test the average hard X-ray (E above 10 keV) properties of nearby Seyfert galaxies; the X-CfA was thought the be optimized to compare the properties of low-luminosity sources to the ones of higher luminosity and, thus, it was also used to test the emission mechanism models; finally, the XMM–Newton sample was extracted from the X-CfA sample so as to ensure a truly unbiased and well defined sample of objects to define the average properties of Seyfert galaxies. Taking advantage of the broad-band coverage of the BeppoS AX MECS and PDS instruments (between ~2-100 keV), I infer the average X-ray spectral propertiesof nearby Seyfert galaxies and in particular the photon index (~1.8), the high-energy cut-off (~290 keV), and the relative amount of cold reflection (~1.0). Moreover the unified scheme for active galactic nuclei was positively tested. The distribution of isotropic indicators used here (photon index, relative amount of reflection, high-energy cut-off and narrow FeK energy centroid) are similar in type I and type II objects while the absorbing column and the iron line equivalent width significantly differ between the two classes of sources with type II objects displaying larger absorbing columns. Taking advantage of the XMM–Newton and X–CfA samples I also deduced from measurements that 30 to 50% of type II Seyfert galaxies are Compton thick. Confirming previous results, the narrow FeK line is consistent, in Seyfert 2 galaxies, with being produced in the same matter responsible for the observed obscuration. These results support the basic picture of the unified model. Moreover, the presence of a X-ray Baldwin effect in type I sources has been measured using for the first time the 20-100 keV luminosity (EW proportional to L(20-100)^(−0.22±0.05)). This finding suggests that the torus covering factor may be a function of source luminosity, thereby suggesting a refinement of the baseline version of the unifed model itself. Using the BeppoSAX sample, it has been also recorded a possible correlation between the photon index and the amount of cold reflection in both type I and II sources. At a first glance this confirms the thermal Comptonization as the most likely origin of the high energy emission for the active galactic nuclei. This relation, in fact, naturally emerges supposing that the accretion disk penetrates, depending to the accretion rate, the central corona at different depths (Merloni et al. 2006): the higher accreting systems hosting disks down to the last stable orbit while the lower accreting systems hosting truncated disks. On the contrary, the study of the well defined X–C f A sample of Seyfert galaxies has proved that the intrinsic X-ray luminosity of nearby Seyfert galaxies can span values between 10^(38−43) erg s^−1, i.e. covering a huge range of accretion rates. The less efficient systems have been supposed to host ADAF systems without accretion disk. However, the study of the X–CfA sample has also proved the existence of correlations between optical emission lines and X-ray luminosity in the entire range of L_(X) covered by the sample. These relations are similar to the ones obtained if high-L objects are considered. Thus the emission mechanism must be similar in luminous and weak systems. A possible scenario to reconcile these somehow opposite indications is assuming that the ADAF and the two phase mechanism co-exist with different relative importance moving from low-to-high accretion systems (as suggested by the Gamma vs. R relation). The present data require that no abrupt transition between the two regimes is present. As mentioned above, the possible presence of an accretion disk has been tested using samples of nearby Seyfert galaxies. Here, to deeply investigate the flow patterns close to super-massive black-holes, three case study objects for which enough counts statistics is available have been analysed using deep X-ray observations taken with XMM–Newton. The obtained results have shown that the accretion flow can significantly differ between the objects when it is analyzed with the appropriate detail. For instance the accretion disk is well established down to the last stable orbit in a Kerr system for IRAS 13197-1627 where strong light bending effect have been measured. The accretion disk seems to be formed spiraling in the inner ~10-30 gravitational radii in NGC 3783 where time dependent and recursive modulation have been measured both in the continuum emission and in the broad emission line component. Finally, the accretion disk seems to be only weakly detectable in rk 509, with its weak broad emission line component. Finally, blueshifted resonant absorption lines have been detected in all three objects. This seems to demonstrate that, around super-massive black-holes, there is matter which is not confined in the accretion disk and moves along the line of sight with velocities as large as v~0.01-0.4c (whre c is the speed of light). Wether this matter forms winds or blobs is still matter of debate together with the assessment of the real statistical significance of the measured absorption lines. Nonetheless, if confirmed, these phenomena are of outstanding interest because they offer new potential probes for the dynamics of the innermost regions of accretion flows, to tackle the formation of ejecta/jets and to place constraints on the rate of kinetic energy injected by AGNs into the ISM and IGM. Future high energy missions (such as the planned Simbol-X and IXO) will likely allow an exciting step forward in our understanding of the flow dynamics around black holes and the formation of the highest velocity outflows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this thesis is to analyze the possibility of using early-type galaxies to place evolutionary and cosmological constraints, by both disentangling what is the main driver of ETGs evolution between mass and environment, and developing a technique to constrain H(z) and the cosmological parameters studying the ETGs age-redshift relation. The (U-V) rest-frame color distribution is studied as a function of mass and environment for two sample of ETGs up to z=1, extracted from the zCOSMOS survey with a new selection criterion. The color distributions and the slopes of the color-mass and color-environment relations are studied, finding a strong dependence on mass and a minor dependence on environment. The spectral analysis performed on the D4000 and Hδ features gives results validating the previous analysis. The main driver of galaxy evolution is found to be the galaxy mass, the environment playing a subdominant but non negligible role. The age distribution of ETGs is also analyzed as a function of mass, providing strong evidences supporting a downsizing scenario. The possibility of setting cosmological constraints studying the age-redshift relation is studied, discussing the relative degeneracies and model dependencies. A new approach is developed, aiming to minimize the impact of systematics on the “cosmic chronometer” method. Analyzing theoretical models, it is demonstrated that the D4000 is a feature correlated almost linearly with age at fixed metallicity, depending only minorly on the models assumed or on the SFH chosen. The analysis of a SDSS sample of ETGs shows that it is possible to use the differential D4000 evolution of the galaxies to set constraints to cosmological parameters in an almost model-independent way. Values of the Hubble constant and of the dark energy EoS parameter are found, which are not only fully compatible, but also with a comparable error budget with the latest results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main areas of research of this thesis are Interference Management and Link-Level Power Efficiency for Satellite Communications. The thesis is divided in two parts. Part I tackles the problem of interference environments in satellite communications, and interference mitigation strategies, not just in terms of avoidance of the interferers, but also in terms of actually exploiting the interference present in the system as a useful signal. The analysis follows a top-down approach across different levels of investigation, starting from system level consideration on interference management, down to link-level aspects and to intra-receiver design. Interference Management techniques are proposed at all the levels of investigation, with interesting results. Part II is related to efficiency in the power domain, for instance in terms of required Input Back-off at the power amplifiers, which can be an issue for waveform based on linear modulations, due to their varying envelope. To cope with such aspects, an analysis is carried out to compare linear modulation with waveforms based on constant envelope modulations. It is shown that in some scenarios, constant envelope waveforms, even if at lower spectral efficiency, outperform linear modulation waveform in terms of energy efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the well-known MC code FLUKA was used to simulate the GE PETrace cyclotron (16.5 MeV) installed at “S. Orsola-Malpighi” University Hospital (Bologna, IT) and routinely used in the production of positron emitting radionuclides. Simulations yielded estimates of various quantities of interest, including: the effective dose distribution around the equipment; the effective number of neutron produced per incident proton and their spectral distribution; the activation of the structure of the cyclotron and the vault walls; the activation of the ambient air, in particular the production of 41Ar, the assessment of the saturation yield of radionuclides used in nuclear medicine. The simulations were validated against experimental measurements in terms of physical and transport parameters to be used at the energy range of interest in the medical field. The validated model was also extensively used in several practical applications uncluding the direct cyclotron production of non-standard radionuclides such as 99mTc, the production of medical radionuclides at TRIUMF (Vancouver, CA) TR13 cyclotron (13 MeV), the complete design of the new PET facility of “Sacro Cuore – Don Calabria” Hospital (Negrar, IT), including the ACSI TR19 (19 MeV) cyclotron, the dose field around the energy selection system (degrader) of a proton therapy cyclotron, the design of plug-doors for a new cyclotron facility, in which a 70 MeV cyclotron will be installed, and the partial decommissioning of a PET facility, including the replacement of a Scanditronix MC17 cyclotron with a new TR19 cyclotron.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Thesis aims at building and discussing mathematical models applications focused on Energy problems, both on the thermal and electrical side. The objective is to show how mathematical programming techniques developed within Operational Research can give useful answers in the Energy Sector, how they can provide tools to support decision making processes of Companies operating in the Energy production and distribution and how they can be successfully used to make simulations and sensitivity analyses to better understand the state of the art and convenience of a particular technology by comparing it with the available alternatives. The first part discusses the fundamental mathematical background followed by a comprehensive literature review about mathematical modelling in the Energy Sector. The second part presents mathematical models for the District Heating strategic network design and incremental network design. The objective is the selection of an optimal set of new users to be connected to an existing thermal network, maximizing revenues, minimizing infrastructure and operational costs and taking into account the main technical requirements of the real world application. Results on real and randomly generated benchmark networks are discussed with particular attention to instances characterized by big networks dimensions. The third part is devoted to the development of linear programming models for optimal battery operation in off-grid solar power schemes, with consideration of battery degradation. The key contribution of this work is the inclusion of battery degradation costs in the optimisation models. As available data on relating degradation costs to the nature of charge/discharge cycles are limited, we concentrate on investigating the sensitivity of operational patterns to the degradation cost structure. The objective is to investigate the combination of battery costs and performance at which such systems become economic. We also investigate how the system design should change when battery degradation is taken into account.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on the energy efficiency in wireless networks under the transmission and information diffusion points of view. In particular, on one hand, the communication efficiency is investigated, attempting to reduce the consumption during transmissions, while on the other hand the energy efficiency of the procedures required to distribute the information among wireless nodes in complex networks is taken into account. For what concerns energy efficient communications, an innovative transmission scheme reusing source of opportunity signals is introduced. This kind of signals has never been previously studied in literature for communication purposes. The scope is to provide a way for transmitting information with energy consumption close to zero. On the theoretical side, starting from a general communication channel model subject to a limited input amplitude, the theme of low power transmission signals is tackled under the perspective of stating sufficient conditions for the capacity achieving input distribution to be discrete. Finally, the focus is shifted towards the design of energy efficient algorithms for the diffusion of information. In particular, the endeavours are aimed at solving an estimation problem distributed over a wireless sensor network. The proposed solutions are deeply analyzed both to ensure their energy efficiency and to guarantee their robustness against losses during the diffusion of information (against information diffusion truncation more in general).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is focused on Smart Grid applications in medium voltage distribution networks. For the development of new applications it appears useful the availability of simulation tools able to model dynamic behavior of both the power system and the communication network. Such a co-simulation environment would allow the assessment of the feasibility of using a given network technology to support communication-based Smart Grid control schemes on an existing segment of the electrical grid and to determine the range of control schemes that different communications technologies can support. For this reason, is presented a co-simulation platform that has been built by linking the Electromagnetic Transients Program Simulator (EMTP v3.0) with a Telecommunication Network Simulator (OPNET-Riverbed v18.0). The simulator is used to design and analyze a coordinate use of Distributed Energy Resources (DERs) for the voltage/var control (VVC) in distribution network. This thesis is focused control structure based on the use of phase measurement units (PMUs). In order to limit the required reinforcements of the communication infrastructures currently adopted by Distribution Network Operators (DNOs), the study is focused on leader-less MAS schemes that do not assign special coordinating rules to specific agents. Leader-less MAS are expected to produce more uniform communication traffic than centralized approaches that include a moderator agent. Moreover, leader-less MAS are expected to be less affected by limitations and constraint of some communication links. The developed co-simulator has allowed the definition of specific countermeasures against the limitations of the communication network, with particular reference to the latency and loss and information, for both the case of wired and wireless communication networks. Moreover, the co-simulation platform has bee also coupled with a mobility simulator in order to study specific countermeasures against the negative effects on the medium voltage/current distribution network caused by the concurrent connection of electric vehicles.