4 resultados para Spatial variation

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several coralligenous reefs occur in the soft bottoms of the northern Adriatic continental shelf. Mediterranean coralligenous habitats are characterised by high species diversity and are intrinsically valuable for their biological diversity and for the ecological processes they support. The conservation and management of these habitats require quantifying spatial and temporal variability of their benthic assemblages. This PhD thesis aims to give a relevant contribution to the knowledge of the structure and dynamics of the epibenthic assemblages on the coralligenous subtidal reefs occurring in the northern Adriatic Sea. The epibenthic assemblages showed a spatial variation larger compared to temporal changes, with a temporal persistence of reef-forming organisms. Assemblages spatial heterogeneity has been related to morphological features and geographical location of the reefs, together with variation in the hydrological conditions. Manipulative experiments help to understand the ecological processes structuring the benthic assemblages and maintaining their diversity. In this regards a short and long term experiment on colonization patterns of artificial substrata over a 3-year period has been performed in three reefs, corresponding to the three main types of assemblages detected in the previous study. The first colonisers, largely depending by the different larval supply, played a key role in determining the heterogeneity of the assemblages in the early stage of colonisation. Lateral invasion, from the surrounding assemblages, was the driver in structuring the mature assemblages. These complex colonisation dynamics explained the high heterogeneity of the assemblages dwelling on the northern Adriatic biogenic reefs. The buildup of these coralligenous reefs mainly depends by the bioconstruction-erosion processes that has been analysed through a field experiment. Bioconstruction, largely due to serpulid polychaetes, prevailed on erosion processes and occurred at similar rates in all sites. Similarly, the total energy contents in the benthic communities do not differ among sites, despite being provided by different species. Therefore, we can hypothesise that both bioconstruction processes and energetic storage may be limited by the availability of resources. Finally the major contribution of the zoobenthos compared to the phytobenthos to the total energetic content of assemblages suggests that the energy flow in these benthic habitats is primarily supported by planktonic food web trough the filter feeding invertebrates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Precision horticulture and spatial analysis applied to orchards are a growing and evolving part of precision agriculture technology. The aim of this discipline is to reduce production costs by monitoring and analysing orchard-derived information to improve crop performance in an environmentally sound manner. Georeferencing and geostatistical analysis coupled to point-specific data mining allow to devise and implement management decisions tailored within the single orchard. Potential applications range from the opportunity to verify in real time along the season the effectiveness of cultural practices to achieve the production targets in terms of fruit size, number, yield and, in a near future, fruit quality traits. These data will impact not only the pre-harvest but their effect will extend to the post-harvest sector of the fruit chain. Chapter 1 provides an updated overview on precision horticulture , while in Chapter 2 a preliminary spatial statistic analysis of the variability in apple orchards is provided before and after manual thinning; an interpretation of this variability and how it can be managed to maximize orchard performance is offered. Then in Chapter 3 a stratification of spatial data into management classes to interpret and manage spatial variation on the orchard is undertaken. An inverse model approach is also applied to verify whether the crop production explains environmental variation. In Chapter 4 an integration of the techniques adopted before is presented. A new key for reading the information gathered within the field is offered. The overall goal of this Dissertation was to probe into the feasibility, the desirability and the effectiveness of a precision approach to fruit growing, following the lines of other areas of agriculture that already adopt this management tool. As existing applications of precision horticulture already had shown, crop specificity is an important factor to be accounted for. This work focused on apple because of its importance in the area where the work was carried out, and worldwide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research presented in my PhD thesis is part of a wider European project, FishPopTrace, focused on traceability of fish populations and products. My work was aimed at developing and analyzing novel genetic tools for a widely distributed marine fish species, the European hake (Merluccius merluccius), in order to investigate population genetic structure and explore potential applications to traceability scenarios. A total of 395 SNPs (Single Nucleotide Polymorphisms) were discovered from a massive collection of Expressed Sequence Tags, obtained by high-throughput sequencing, and validated on 19 geographic samples from Atlantic and Mediterranean. Genome-scan approaches were applied to identify polymorphisms on genes potentially under divergent selection (outlier SNPs), showing higher genetic differentiation among populations respect to the average observed across loci. Comparative analysis on population structure were carried out on putative neutral and outlier loci at wide (Atlantic and Mediterranean samples) and regional (samples within each basin) spatial scales, to disentangle the effects of demographic and adaptive evolutionary forces on European hake populations genetic structure. Results demonstrated the potential of outlier loci to unveil fine scale genetic structure, possibly identifying locally adapted populations, despite the weak signal showed from putative neutral SNPs. The application of outlier SNPs within the framework of fishery resources management was also explored. A minimum panel of SNP markers showing maximum discriminatory power was selected and applied to a traceability scenario aiming at identifying the basin (and hence the stock) of origin, Atlantic or Mediterranean, of individual fish. This case study illustrates how molecular analytical technologies have operational potential in real-world contexts, and more specifically, potential to support fisheries control and enforcement and fish and fish product traceability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal effects are rapidly gaining importance in nanometer heterogeneous integrated systems. Increased power density, coupled with spatio-temporal variability of chip workload, cause lateral and vertical temperature non-uniformities (variations) in the chip structure. The assumption of an uniform temperature for a large circuit leads to inaccurate determination of key design parameters. To improve design quality, we need precise estimation of temperature at detailed spatial resolution which is very computationally intensive. Consequently, thermal analysis of the designs needs to be done at multiple levels of granularity. To further investigate the flow of chip/package thermal analysis we exploit the Intel Single Chip Cloud Computer (SCC) and propose a methodology for calibration of SCC on-die temperature sensors. We also develop an infrastructure for online monitoring of SCC temperature sensor readings and SCC power consumption. Having the thermal simulation tool in hand, we propose MiMAPT, an approach for analyzing delay, power and temperature in digital integrated circuits. MiMAPT integrates seamlessly into industrial Front-end and Back-end chip design flows. It accounts for temperature non-uniformities and self-heating while performing analysis. Furthermore, we extend the temperature variation aware analysis of designs to 3D MPSoCs with Wide-I/O DRAM. We improve the DRAM refresh power by considering the lateral and vertical temperature variations in the 3D structure and adapting the per-DRAM-bank refresh period accordingly. We develop an advanced virtual platform which models the performance, power, and thermal behavior of a 3D-integrated MPSoC with Wide-I/O DRAMs in detail. Moving towards real-world multi-core heterogeneous SoC designs, a reconfigurable heterogeneous platform (ZYNQ) is exploited to further study the performance and energy efficiency of various CPU-accelerator data sharing methods in heterogeneous hardware architectures. A complete hardware accelerator featuring clusters of OpenRISC CPUs, with dynamic address remapping capability is built and verified on a real hardware.