13 resultados para Spatial Point Pattern analysis

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last two decades, authors have begun to expand classical stochastic frontier (SF) models in order to include also some spatial components. Indeed, firms tend to concentrate in clusters, taking advantage of positive agglomeration externalities due to cooperation, shared ideas and emulation, resulting in increased productivity levels. Until now scholars have introduced spatial dependence into SF models following two different paths: evaluating global and local spatial spillover effects related to the frontier or considering spatial cross-sectional correlation in the inefficiency and/or in the error term. In this thesis, we extend the current literature on spatial SF models introducing two novel specifications for panel data. First, besides considering productivity and input spillovers, we introduce the possibility to evaluate the specific spatial effects arising from each inefficiency determinant through their spatial lags aiming to capture also knowledge spillovers. Second, we develop a very comprehensive spatial SF model that includes both frontier and error-based spillovers in order to consider four different sources of spatial dependence (i.e. productivity and input spillovers related to the frontier function and behavioural and environmental correlation associated with the two error terms). Finally, we test the finite sample properties of the two proposed spatial SF models through simulations, and we provide two empirical applications to the Italian accommodation and agricultural sectors. From a practical perspective, policymakers, based on results from these models, can rely on precise, detailed and distinct insights on the spillover effects affecting the productive performance of neighbouring spatial units obtaining interesting and relevant suggestions for policy decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changepoint analysis is a well established area of statistical research, but in the context of spatio-temporal point processes it is as yet relatively unexplored. Some substantial differences with regard to standard changepoint analysis have to be taken into account: firstly, at every time point the datum is an irregular pattern of points; secondly, in real situations issues of spatial dependence between points and temporal dependence within time segments raise. Our motivating example consists of data concerning the monitoring and recovery of radioactive particles from Sandside beach, North of Scotland; there have been two major changes in the equipment used to detect the particles, representing known potential changepoints in the number of retrieved particles. In addition, offshore particle retrieval campaigns are believed may reduce the particle intensity onshore with an unknown temporal lag; in this latter case, the problem concerns multiple unknown changepoints. We therefore propose a Bayesian approach for detecting multiple changepoints in the intensity function of a spatio-temporal point process, allowing for spatial and temporal dependence within segments. We use Log-Gaussian Cox Processes, a very flexible class of models suitable for environmental applications that can be implemented using integrated nested Laplace approximation (INLA), a computationally efficient alternative to Monte Carlo Markov Chain methods for approximating the posterior distribution of the parameters. Once the posterior curve is obtained, we propose a few methods for detecting significant change points. We present a simulation study, which consists in generating spatio-temporal point pattern series under several scenarios; the performance of the methods is assessed in terms of type I and II errors, detected changepoint locations and accuracy of the segment intensity estimates. We finally apply the above methods to the motivating dataset and find good and sensible results about the presence and quality of changes in the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of omic data production has opened many new perspectives in the quest for modelling complexity in biophysical systems. With the capability of characterizing a complex organism through the patterns of its molecular states, observed at different levels through various omics, a new paradigm of investigation is arising. In this thesis, we investigate the links between perturbations of the human organism, described as the ensemble of crosstalk of its molecular states, and health. Machine learning plays a key role within this picture, both in omic data analysis and model building. We propose and discuss different frameworks developed by the author using machine learning for data reduction, integration, projection on latent features, pattern analysis, classification and clustering of omic data, with a focus on 1H NMR metabolomic spectral data. The aim is to link different levels of omic observations of molecular states, from nanoscale to macroscale, to study perturbations such as diseases and diet interpreted as changes in molecular patterns. The first part of this work focuses on the fingerprinting of diseases, linking cellular and systemic metabolomics with genomic to asses and predict the downstream of perturbations all the way down to the enzymatic network. The second part is a set of frameworks and models, developed with 1H NMR metabolomic at its core, to study the exposure of the human organism to diet and food intake in its full complexity, from epidemiological data analysis to molecular characterization of food structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The challenges of the current global food systems are often framed around feeding the world's growing population while meeting sustainable development for future generations. Globalization has brought to a fragmentation of food spaces, leading to a flexible and mutable supply chain. This poses a major challenge to food and nutrition security, affecting also rural-urban dynamics in territories. Furthermore, the recent crises have highlighted the vulnerability to shocks and disruptions of the food systems and the eco-system due to the intensive management of natural, human and economic capital. Hence, a sustainable and resilient transition of the food systems is required through a multi-faceted approach that tackles the causes of unsustainability and promotes sustainable practices at all levels of the food system. In this respect, a territorial approach becomes a relevant entry point of analysis for the food system’s multifunctionality and can support the evaluation of sustainability by quantifying impacts associated with quantitative methods and understanding the territorial responsibility of different actors with qualitative ones. Against this background the present research aims to i) investigate the environmental, costing and social indicators suitable for a scoring system able to measure the integrated sustainability performance of food initiatives within the City/Region territorial context; ii) develop a territorial assessment framework to measure sustainability impacts of agricultural systems; and iii) define an integrated methodology to match production and consumption at a territorial level to foster a long-term vision of short food supply chains. From a methodological perspective, the research proposes a mixed quantitative and qualitative research method. The outcomes provide an in-depth view into the environmental and socio-economic impacts of food systems at the territorial level, investigating possible indicators, frameworks, and business strategies to foster their future sustainable development.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the problems in the analysis of nucleus-nucleus collisions is to get information on the value of the impact parameter b. This work consists in the application of pattern recognition techniques aimed at associating values of b to groups of events. To this end, a support vec- tor machine (SVM) classifier is adopted to analyze multifragmentation reactions. This method allows to backtracing the values of b through a particular multidimensional analysis. The SVM classification con- sists of two main phase. In the first one, known as training phase, the classifier learns to discriminate the events that are generated by two different model:Classical Molecular Dynamics (CMD) and Heavy- Ion Phase-Space Exploration (HIPSE) for the reaction: 58Ni +48 Ca at 25 AMeV. To check the classification of events in the second one, known as test phase, what has been learned is tested on new events generated by the same models. These new results have been com- pared to the ones obtained through others techniques of backtracing the impact parameter. Our tests show that, following this approach, the central collisions and peripheral collisions, for the CMD events, are always better classified with respect to the classification by the others techniques of backtracing. We have finally performed the SVM classification on the experimental data measured by NUCL-EX col- laboration with CHIMERA apparatus for the previous reaction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objective of this work was to investigate the impact of different hybridization concepts and levels of hybridization on fuel economy of a standard road vehicle where both conventional and non-conventional hybrid architectures are treated exactly in the same way from the point of view of overall energy flow optimization. Hybrid component models were developed and presented in detail as well as the simulations results mainly for NEDC cycle. The analysis was performed on four different parallel hybrid powertrain concepts: Hybrid Electric Vehicle (HEV), High Speed Flywheel Hybrid Vehicle (HSF-HV), Hydraulic Hybrid Vehicle (HHV) and Pneumatic Hybrid Vehicle (PHV). In order to perform equitable analysis of different hybrid systems, comparison was performed also on the basis of the same usable system energy storage capacity (i.e. 625kJ for HEV, HSF and the HHV) but in the case of pneumatic hybrid systems maximal storage capacity was limited by the size of the systems in order to comply with the packaging requirements of the vehicle. The simulations were performed within the IAV Gmbh - VeLoDyn software simulator based on Matlab / Simulink software package. Advanced cycle independent control strategy (ECMS) was implemented into the hybrid supervisory control unit in order to solve power management problem for all hybrid powertrain solutions. In order to maintain State of Charge within desired boundaries during different cycles and to facilitate easy implementation and recalibration of the control strategy for very different hybrid systems, Charge Sustaining Algorithm was added into the ECMS framework. Also, a Variable Shift Pattern VSP-ECMS algorithm was proposed as an extension of ECMS capabilities so as to include gear selection into the determination of minimal (energy) cost function of the hybrid system. Further, cycle-based energetic analysis was performed in all the simulated cases, and the results have been reported in the corresponding chapters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This doctoral dissertation presents a new method to asses the influence of clearancein the kinematic pairs on the configuration of planar and spatial mechanisms. The subject has been widely investigated in both past and present scientific literature, and is approached in different ways: a static/kinetostatic way, which looks for the clearance take-up due to the external loads on the mechanism; a probabilistic way, which expresses clearance-due displacements using probability density functions; a dynamic way, which evaluates dynamic effects like the actual forces in the pairs caused by impacts, or the consequent vibrations. This dissertation presents a new method to approach the problem of clearance. The problem is studied from a purely kinematic perspective. With reference to a given mechanism configuration, the pose (position and orientation) error of the mechanism link of interest is expressed as a vector function of the degrees of freedom introduced in each pair by clearance: the presence of clearance in a kinematic pair, in facts, causes the actual pair to have more degrees of freedom than the theoretical clearance-free one. The clearance-due degrees of freedom are bounded by the pair geometry. A proper modelling of clearance-affected pairs allows expressing such bounding through analytical functions. It is then possible to study the problem as a maximization problem, where a continuous function (the pose error of the link of interest) subject to some constraints (the analytical functions bounding clearance- due degrees of freedom) has to be maximize. Revolute, prismatic, cylindrical, and spherical clearance-affected pairs have been analytically modelled; with reference to mechanisms involving such pairs, the solution to the maximization problem has been obtained in a closed form.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thesis analyses the hydrodynamic induced by an array of Wave energy Converters (WECs), under an experimental and numerical point of view. WECs can be considered an innovative solution able to contribute to the green energy supply and –at the same time– to protect the rear coastal area under marine spatial planning considerations. This research activity essentially rises due to this combined concept. The WEC under exam is a floating device belonging to the Wave Activated Bodies (WAB) class. Experimental data were performed at Aalborg University in different scales and layouts, and the performance of the models was analysed under a variety of irregular wave attacks. The numerical simulations performed with the codes MIKE 21 BW and ANSYS-AQWA. Experimental results were also used to calibrate the numerical parameters and/or to directly been compared to numerical results, in order to extend the experimental database. Results of the research activity are summarized in terms of device performance and guidelines for a future wave farm installation. The device length should be “tuned” based on the local climate conditions. The wave transmission behind the devices is pretty high, suggesting that the tested layout should be considered as a module of a wave farm installation. Indications on the minimum inter-distance among the devices are provided. Furthermore, a CALM mooring system leads to lower wave transmission and also larger power production than a spread mooring. The two numerical codes have different potentialities. The hydrodynamics around single and multiple devices is obtained with MIKE 21 BW, while wave loads and motions for a single moored device are derived from ANSYS-AQWA. Combining the experimental and numerical it is suggested –for both coastal protection and energy production– to adopt a staggered layout, which will maximise the devices density and minimize the marine space required for the installation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A critical point in the analysis of ground displacements time series is the development of data driven methods that allow the different sources that generate the observed displacements to be discerned and characterised. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows reducing the dimensionality of the data space maintaining most of the variance of the dataset explained. Anyway, PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem, i.e. in recovering and separating the original sources that generated the observed data. This is mainly due to the assumptions on which PCA relies: it looks for a new Euclidean space where the projected data are uncorrelated. The Independent Component Analysis (ICA) is a popular technique adopted to approach this problem. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, I use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources, giving a more reliable estimate of them. Here I present the application of the vbICA technique to GPS position time series. First, I use vbICA on synthetic data that simulate a seismic cycle (interseismic + coseismic + postseismic + seasonal + noise) and a volcanic source, and I study the ability of the algorithm to recover the original (known) sources of deformation. Secondly, I apply vbICA to different tectonically active scenarios, such as the 2009 L'Aquila (central Italy) earthquake, the 2012 Emilia (northern Italy) seismic sequence, and the 2006 Guerrero (Mexico) Slow Slip Event (SSE).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present thesis focuses on the on-fault slip distribution of large earthquakes in the framework of tsunami hazard assessment and tsunami warning improvement. It is widely known that ruptures on seismic faults are strongly heterogeneous. In the case of tsunamigenic earthquakes, the slip heterogeneity strongly influences the spatial distribution of the largest tsunami effects along the nearest coastlines. Unfortunately, after an earthquake occurs, the so-called finite-fault models (FFM) describing the coseismic on-fault slip pattern becomes available over time scales that are incompatible with early tsunami warning purposes, especially in the near field. Our work aims to characterize the slip heterogeneity in a fast, but still suitable way. Using finite-fault models to build a starting dataset of seismic events, the characteristics of the fault planes are studied with respect to the magnitude. The patterns of the slip distribution on the rupture plane, analysed with a cluster identification algorithm, reveal a preferential single-asperity representation that can be approximated by a two-dimensional Gaussian slip distribution (2D GD). The goodness of the 2D GD model is compared to other distributions used in literature and its ability to represent the slip heterogeneity in the form of the main asperity is proven. The magnitude dependence of the 2D GD parameters is investigated and turns out to be of primary importance from an early warning perspective. The Gaussian model is applied to the 16 September 2015 Illapel, Chile, earthquake and used to compute early tsunami predictions that are satisfactorily compared with the available observations. The fast computation of the 2D GD and its suitability in representing the slip complexity of the seismic source make it a useful tool for the tsunami early warning assessments, especially for what concerns the near field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sandy coasts represent vital areas whose preservation and maintenance also involve economic and tourist interests. Besides, these dynamic environments undergo the erosion process at different levels depending on their specific characteristics. For this reason, defence interventions are commonly realized by combining engineering solutions and management policies to evaluate their effects over time. Monitoring activities represent the fundamental instrument to obtain a deep knowledge of the investigated phenomenon. Thanks to technological development, several possibilities both in terms of geomatic surveying techniques and processing tools are available, allowing to reach high performances and accuracy. Nevertheless, when the littoral definition includes both emerged and submerged beaches, several issues have to be considered. Therefore, the geomatic surveys and all the following steps need to be calibrated according to the individual application, with the reference system, accuracy and spatial resolution as primary aspects. This study provides the evaluation of the available geomatic techniques, processing approaches, and derived products, aiming at optimising the entire workflow of coastal monitoring by adopting an accuracy-efficiency trade-off. The presented analyses highlight the balance point when the increase in performance becomes an additional value for the obtained products ensuring proper data management. This perspective can represent a helpful instrument to properly plan the monitoring activities according to the specific purposes of the analysis. Finally, the primary uses of the acquired and processed data in monitoring contexts are presented, also considering possible applications for numerical modelling as supporting tools. Moreover, the theme of coastal monitoring has been addressed throughout this thesis by considering a practical point of view, linking to the activities performed by Arpae (Regional agency for prevention, environment and energy of Emilia-Romagna). Indeed, the Adriatic coast of Emilia-Romagna, where sandy beaches particularly exposed to erosion are present, has been chosen as a case study for all the analyses and considerations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The exploitation of hydrocarbon reservoirs by the oil and gas industries represents one of the most relevant and concerning anthropic stressor in various marine areas worldwide and the presence of extractive structures can have severe consequences on the marine environment. Environmental monitoring surveys are carried out to monitor the effects and impacts of offshore energy facilities. Macrobenthic communities, inhabiting the soft-bottom, represent a key component of these surveys given their great responsiveness to natural and anthropic changes. A comprehensive collection of monitoring data from four Italian seas was used to investigate distributional pattern of macrozoobenthos assemblages confirming a high spatial variability in relation to the environmental variables analyzed. Since these datasets could represent a powerful tool for the industrial and scientific research, the steps and standardized procedures needed to obtain robust and comparable high-quality data were investigated and outlined. Over recent years, decommissioning of old platforms is a growing topic in this sector, involving many actors in the various decision-making processes. A Multi-Criteria Decision Analysis, specific for the Adriatic Sea, was developed to investigate the impacts of decommissioning of a gas platform on environmental and socio-economic aspects, to select the best decommissioning scenario. From the scenarios studied, the most impacting one has resulted to be total removal, affecting all the faunal component considered in the study. Currently, the European nations are increasing the production of energy from offshore wind farms with an exponential expansion. A comparative study of methodologies used five countries of the North Sea countries was carried out to investigate the best approaches to monitor the effects of wind farms on the benthic communities. In the foreseeable future, collaboration between industry, scientific communities, national and international policies are needed to gain knowledge concerning the effects of these industrial activities on the ecological status of the ecosystems.