1 resultado para Somatostatin analogues
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Longstanding debates concerning the origin of the Kess Kess Emsian carbonate mounds exposed at Hamar Laghdad Ridge (eastern Anti-Atlas, Morocco) centre around the processes that induced precipitation of carbonate mud and the preservation of steep morphologies. Although in the last years an origin related to hydrothermalism seemed to be more likely, to date the Kess Kess are still considered controversial vent deposits. This study combines in updated research review information from previous work and new detailed field observations coupled with new analytical results to define a consistent framework and some new insight of current knowledge about the origin of these mounds. We obtain a complete minero-petrographic and palaeobiological data set and a detailed geochemical characterization of the different lithologies and facies of the Hamar Laghdad stratigraphic succession, including mounds, and we compared the results with the data from Maïder Basin mounds (Anti-Atlas, Morocco). Our data support the hydrothermal model proposed for the genesis and development of the Kess Kess mounds. The mechanisms linked to the mounds formation and growth are discussed in the light of the new finding of fluid-sediment interaction within a scenario driven by late magmatic fluids circulation. Conical mounds and other fluids related morphologies were also reported from Crommelin crater area (Arabia Terra, Mars). These mounds consist in meter-sized conical buildups hosted in the Equatorial Layered Deposits (ELDs) deposed during a regional groundwater fluid upwelling. Geometries and geological conditions that might have controlled the development of such morphologies were discussed. According to our data the morphological and stratigraphical characteristics of Crommelin area mounds are most consistent with a formation by fluids advection. Then we compare terrestrial and Martian data and examine the geological settings of hydrothermal mound occurrences on Earth in order to describe potential target areas for hydrothermal structures on Mars.