2 resultados para Soluble Methane Monooxygenase

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioremediation implies the use of living organisms, primarily microorganisms, to convert environmental contaminants into less toxic forms. The impact of the consequences of hydrocarbon release in the environment maintain a high research interest in the study of microbial metabolisms associated with the biodegradation of aromatic and aliphatic hydrocarbons but also in the analysis of microbial enzymes that can convert petroleum substrates to value-added products. The studies described in this Thesis fall within the research field that directs the efforts into identifying gene/proteins involved in the catabolism of n-alkanes and into studying the regulatory mechanisms leading to their oxidation. In particular the studies were aimed at investigating the molecular aspects of the ability of Rhodococcus sp. BCP1 to grow on aliphatic hydrocarbons as sole carbon and energy sources. We studied the ability of Rhodococcus sp. BCP1 to grow on gaseous (C2-C4), liquid (C5-C16) and solid (C17-C28) n-alkanes that resulted to be biochemically correlated with the activity of one or more monooxygenases. In order to identify the alkane monooxygenase that is involved in the n-alkanes degradation pathway in Rhodococcus sp. BCP1, PCR-based methodology was applied by using degenerate primers targeting AlkB monooxygenase family members. As result, a chromosomal region, including the alkB gene cluster, was cloned from Rhodococcus sp. BCP1 genome. We characterized the products of this alkB gene cluster and the products of the orfs included in the flanking regions by comparative analysis with the homologues in the database. alkB gene expression studies were carried out by RT-PCR and by the construction of a promoter probe vector containing the lacZ gene downstream of the alkB promoter. B-galactosidase assays revealed the alkB promoter activity induced by n-alkanes and by n-alkanes metabolic products. Furthermore, the transcriptional start of alkB gene was determined by primer extension procedure. A proteomic approach was subsequently applied to compare the protein patterns expressed by BCP1 growing on n-butane, n-hexane, n-hexadecane or n-eicosane with the protein pattern expressed by BCP1 growing on succinate. The accumulation of enzymes specifically induced on n-alkanes was determined. These enzymes were identified by tandem mass spectrometry (LC/MS/MS). Finally, a prm gene, homologue to the gene family coding for soluble di-iron monooxygenases (SDIMOs), has been isolated from Rhodococcus sp. BCP1 genome. This gene product could be involved in the degradation of gaseous n-alkanes in this Rhodococcus strain. The versatility in utilizing hydrocarbons and the discovery of new remarkable metabolic activities outline the potential applications of this microorganism in environmental and industrial biotechnologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane yield of ligno-cellulosic substrates (i.e. dedicated energy crops and agricultural residues) may be limited by their composition and structural features. Hence, biomass pre-treatments are envisaged to overcome this constraint. This thesis aimed at: i) assessing biomass and methane yield of dedicated energy crops; ii) evaluating the effects of hydrothermal pre-treatments on methane yield of Arundo; iii) investigating the effects of NaOH pre-treatments and iv) acid pre-treatments on chemical composition, physical structure and methane yield of two dedicated energy crops and one agricultural residue. Three multi-annual species (Arundo, Switchgrass and Sorghum Silk), three sorghum hybrids (Trudan Headless, B133 and S506) and a maize, as reference for AD, were studied in the frame of point i). Results exhibit the remarkable variation in biomass yield, chemical characteristics and potential methane yield. The six species alternative to maize deserve attention in view of a low need of external inputs but necessitate improvements in biodegradability. In the frame of point ii), Arundo was subjected to hydrothermal pre-treatments at different temperature, time and acid catalyst (with and without H2SO4). Pre-treatments determined a variable effect on methane yield: pre-treatments without acid catalyst achieved up to +23% CH4 output, while pre-treatments with H2SO4 catalyst incurred a methanogenic inhibition. Two biomass crops (Arundo and B133) and an agricultural residue (Barley straw) were subject to NaOH and acid pre-treatments, in the frame of point iii) and iv), respectively. Different pre-treatments determined a change of chemical and physical structure and an increase of methane yield: up to +30% and up to +62% CH4 output in Arundo with NaOH and acid pre-treatments, respectively. It is thereby demonstrated that pre-treatments can actually enhance biodegradability and subsequent CH4 output of ligno-cellulosic substrates, although pre-treatment viability needs to be evaluated at the level of full scale biogas plants in a perspective of profitable implementation.