3 resultados para Solid-liquid equilibria
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Osmotic Dehydration and Vacuum Impregnation are interesting operations in the food industry with applications in minimal fruit processing and/or freezing, allowing to develop new products with specific innovative characteristics. Osmotic dehydration is widely used for the partial removal of water from cellular tissue by immersion in hypertonic (osmotic) solution. The driving force for the diffusion of water from the tissue is provided by the differences in water chemical potential between the external solution and the internal liquid phase of the cells. Vacuum Impregnation of porous products immersed in a liquid phase consist of reduction of pressure in a solid-liquid system (vacuum step) followed by the restoration of atmospheric pressure (atmospheric step). During the vacuum step the internal gas in the product pores is expanded and partially flows out while during the atmospheric step, there is a compression of residual gas and the external liquid flows into the pores (Fito, 1994). This process is also a very useful unit operation in food engineering as it allows to introduce specific solutes in the tissue which can play different functions (antioxidants, pH regulators, preservatives, cryoprotectants etc.). The present study attempts to enhance our understanding and knowledge of fruit as living organism, interacting dynamically with the environment, and to explore metabolic, structural, physico-chemical changes during fruit processing. The use of innovative approaches and/or technologies such as SAFES (Systematic Approach to Food Engineering System), LF-NMR (Low Frequency Nuclear Magnetic Resonance), GASMAS (Gas in Scattering Media Absorption Spectroscopy) are very promising to deeply study these phenomena. SAFES methodology was applied in order to study irreversibility of the structural changes of kiwifruit during short time of osmotic treatment. The results showed that the deformed tissue can recover its initial state 300 min after osmotic dehydration at 25 °C. The LF-NMR resulted very useful in water status and compartmentalization study, permitting to separate observation of three different water population presented in vacuole, cytoplasm plus extracellular space and cell wall. GASMAS techniques was able to study the pressure equilibration after Vacuum Impregnation showing that after restoration of atmospheric pressure in the solid-liquid system, there was a reminding internal low pressure in the apple tissue that slowly increases until reaching the atmospheric pressure, in a time scale that depends on the vacuum applied during the vacuum step. The physiological response of apple tissue on Vacuum Impregnation process was studied indicating the possibility of vesicular transport within the cells. Finally, the possibility to extend the freezing tolerance of strawberry fruits impregnated with cryoprotectants was proven.
Resumo:
Over the past years fruit and vegetable industry has become interested in the application of both osmotic dehydration and vacuum impregnation as mild technologies because of their low temperature and energy requirements. Osmotic dehydration is a partial dewatering process by immersion of cellular tissue in hypertonic solution. The diffusion of water from the vegetable tissue to the solution is usually accompanied by the simultaneous solutes counter-diffusion into the tissue. Vacuum impregnation is a unit operation in which porous products are immersed in a solution and subjected to a two-steps pressure change. The first step (vacuum increase) consists of the reduction of the pressure in a solid-liquid system and the gas in the product pores is expanded, partially flowing out. When the atmospheric pressure is restored (second step), the residual gas in the pores compresses and the external liquid flows into the pores. This unit operation allows introducing specific solutes in the tissue, e.g. antioxidants, pH regulators, preservatives, cryoprotectancts. Fruit and vegetable interact dynamically with the environment and the present study attempts to enhance our understanding on the structural, physico-chemical and metabolic changes of plant tissues upon the application of technological processes (osmotic dehydration and vacuum impregnation), by following a multianalytical approach. Macro (low-frequency nuclear magnetic resonance), micro (light microscopy) and ultrastructural (transmission electron microscopy) measurements combined with textural and differential scanning calorimetry analysis allowed evaluating the effects of individual osmotic dehydration or vacuum impregnation processes on (i) the interaction between air and liquid in real plant tissues, (ii) the plant tissue water state and (iii) the cell compartments. Isothermal calorimetry, respiration and photosynthesis determinations led to investigate the metabolic changes upon the application of osmotic dehydration or vacuum impregnation. The proposed multianalytical approach should enable both better designs of processing technologies and estimations of their effects on tissue.
Resumo:
Biochar is a carbonaceous material produced through pyrolysis of biomass. One promising application of biochar is phosphorus recovery from wastewater. Phosphorus is a vital nutrient for plant growth, but its use in fertilizers often leads to runoff or leaching. Wastewater treatment plants discharge large amounts of phosphorus-rich wastewater, contributing to eutrophication and ecological harm. Biochar can sorb phosphorus, retaining it in solid form. In this thesis, two composites made of biomass and dolomite or shells exhibited superior phosphate sorption compared to biochar alone, reaching up to 100% sorption. Biochar also finds use in soil remediation, specifically in cleaning up contaminated soil. Polycyclic aromatic hydrocarbons (PAHs), which can be carcinogenic and toxic, can be present in soil. Biochar adsorb PAHs, preventing their leakage or bioaccumulation. Hetero-PAHs, a subclass of PAHs with nitrogen, sulfur, or oxygen atoms in their ring structures, are particularly challenging to degrade. Little is known about their behavior or sorption onto biochar. In this thesis, biochar and activated carbon were effective in immobilizing PAHs and hetero-PAHs in real soils, with rates of immobilization reaching 100%. Biochar performed equally or better than activated carbon, offering a cost-effective alternative due to its lower price. Biochar reduce of metal(loid)s mobility in soil. Metal(loid)s like lead, zinc, and arsenic can contaminate soil through industrial sources, agricultural runoff, and other pollution, and are toxic to plants and animals, rendering the soil unsuitable for agriculture. When biochar is added to contaminated soil, it binds to metal(loid)s, preventing leaching into the environment. A biomass-dolomite composite was compared to activated carbon for immobilizing metal(loid)s in contaminated soils. The composite generally outperformed activated carbon and exhibited the ability to immobilize arsenic. In summary, biochar shows promise for phosphorus recovery, soil remediation, and reducing the mobility of heavy metals, offering cost-effective and sustainable solutions to these environmental challenges.