4 resultados para Soil-structure
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This work illustrates a soil-tunnel-structure interaction study performed by an integrated,geotechnical and structural,approach based on 3D finite element analyses and validated against experimental observations.The study aims at analysing the response of reinforced concrete framed buildings on discrete foundations in interaction with metro lines.It refers to the case of the twin tunnels of the Milan (Italy) metro line 5,recently built in coarse grained materials using EPB machines,for which subsidence measurements collected along ground and building sections during tunnelling were available.Settlements measured under freefield conditions are firstly back interpreted using Gaussian empirical predictions. Then,the in situ measurements’ analysis is extended to include the evolving response of a 9 storey reinforced concrete building while being undercrossed by the metro line.In the finite element study,the soil mechanical behaviour is described using an advanced constitutive model. This latter,when combined with a proper simulation of the excavation process, proves to realistically reproduce the subsidence profiles under free field conditions and to capture the interaction phenomena occurring between the twin tunnels during the excavation. Furthermore, when the numerical model is extended to include the building, schematised in a detailed manner, the results are in good agreement with the monitoring data for different stages of the twin tunnelling. Thus, they indirectly confirm the satisfactory performance of the adopted numerical approach which also allows a direct evaluation of the structural response as an outcome of the analysis. Further analyses are also carried out modelling the building with different levels of detail. The results highlight that, in this case, the simplified approach based on the equivalent plate schematisation is inadequate to capture the real tunnelling induced displacement field. The overall behaviour of the system proves to be mainly influenced by the buried portion of the building which plays an essential role in the interaction mechanism, due to its high stiffness.
Resumo:
With the entry into force of the latest Italian Building Code (NTC 2008, 2018), innovative criteria were provided, especially for what concerns the seismic verifications of large infrastructures. In particular, for buildings considered as strategic, such as large dams, a seismotectonic study of the site was declared necessary, which involves a re-assessment of the basic seismic hazard. This PhD project fits into this context, being part of the seismic re-evaluation process of large dams launched on a national scale following the O.P.C.M. 3274/2003, D.L. 79/2004. A full seismotectonic study in the region of two large earth dams in Southern Italy was carried out. We identified and characterized the structures that could generate earthquakes in our study area, together with the definition of the local seismic history. This information was used for the reassessment of the basic seismic hazard, using probabilistic seismic hazard assessment approaches. In recent years, fault-based models for the seismic hazard assessment have been proposed all over the world as a new emerging methodology. For this reason, we decided to test the innovative SHERIFS approach on our study area. The occasion of the seismotectonic study gave also the opportunity to focus on the characteristics of the seismic stations that provided the data for the study itself. In the context of the work presented here, we focused on the 10 stations that had been active for the longest time and we carried out a geophysical characterization, the data of which merged into a more general study on the soil-structure interaction at seismic stations and on the ways in which it could affect the SHA. Lastly, an additional experimental study on the two dams and their associated minor structures is also presented, aimed at defining their main dynamic parameters, useful for subsequent dynamic structural and geotechnical studies.
Resumo:
The scope of the thesis is to broaden the knowledge about axially loaded pipe piles, that can play as foundations for offshore wind turbines based on jacket structures. The goal of the work was pursued by interpreting experimental data on large-scale model piles and by developing numerical tools for the prediction of their monotonic response to tensile and compressive loads to failure. The availability of experimental results on large scale model piles produced in two different campaigns at Fraunhofer IWES (Hannover, Germany) represented the reference for the whole work. Data from CPTs, blow counts during installation and load-displacement curves allowed to develop considerations on the experimental results and comparison with empirical methods from literature, such as CPT-based methods and Load Transfer methods. The understanding of soil-structure interaction mechanisms has been involved in the study in order to better assess the mechanical response of the sand with the scope to help in developing predictive tools of the experiments. A lack of information on the response of Rohsand 3152 when in contact with steel was highlighted, so the necessity of better assessing its response was fulfilled with a comprehensive campaign of interface shear test. It was found how the response of the sand to ultimate conditions evolve with the roughness of the steel, which is a precious information to take account of when attempting the prediction of a pile capacity. Parallel to this topic, the work has developed a numerical modelling procedure that was validated on the available large-scale model piles at IWES. The modelling strategy is intended to build a FE model whose mechanical properties of the sand come from an interpretation of commonly available geotechnical tests. The results of the FE model were compared with other predictive tools currently used in the engineering practice.
Resumo:
Nanotechnology promises huge benefits for society and capital invested in this new technology is steadily increasing, therefore there is a growing number of nanotechnology products on the market and inevitably engineered nanomaterials will be released in the atmosphere with potential risks to humans and environment. This study set out to extend the comprehension of the impact of metal (Ag, Co, Ni) and metal oxide (CeO2, Fe3O4, SnO2, TiO2) nanoparticles (NPs) on one of the most important environmental compartments potentially contaminated by NPs, the soil system, through the use of chemical and biological tools. For this purpose experiments were carried out to simulate realistic environmental conditions of wet and dry deposition of NPs, considering ecologically relevant endpoints. In detail, this thesis involved the study of three model systems and the evaluation of related issues: (i) NPs and bare soil, to assess the influence of NPs on the functions of soil microbial communities; (ii) NPs and plants, to evaluate the chronic toxicity and accumulation of NPs in edible tissues; (iii) NPs and invertebrates, to verify the effects of NPs on earthworms and the damaging of their functionality. The study highlighted that NP toxicity is generally influenced by NP core elements and the impact of NPs on organisms is specie-specific; moreover experiments conducted in media closer to real conditions showed a decrease in toxicity with respect to in vitro test or hydroponic tests. However, only a multidisciplinary approach, involving physical, chemical and biological skills, together with the use of advanced techniques, such as X-ray absorption fine structure spectroscopy, could pave the way to draw the right conclusions and accomplish a deeper comprehension of the effects of NPs on soil and soil inhabitants.