6 resultados para Smart electronic meter
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Ambient Intelligence (AmI) envisions a world where smart, electronic environments are aware and responsive to their context. People moving into these settings engage many computational devices and systems simultaneously even if they are not aware of their presence. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. The dependence on a large amount of fixed and mobile sensors embedded into the environment makes of Wireless Sensor Networks one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes, simple devices that typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. In order to handle the large amount of data generated by a WSN several multi sensor data fusion techniques have been developed. The aim of multisensor data fusion is to combine data to achieve better accuracy and inferences than could be achieved by the use of a single sensor alone. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas: Multimodal Surveillance and Activity Recognition. Novel techniques to handle data from a network of low-cost, low-power Pyroelectric InfraRed (PIR) sensors are presented. Such techniques allow the detection of the number of people moving in the environment, their direction of movement and their position. We discuss how a mesh of PIR sensors can be integrated with a video surveillance system to increase its performance in people tracking. Furthermore we embed a PIR sensor within the design of a Wireless Video Sensor Node (WVSN) to extend its lifetime. Activity recognition is a fundamental block in natural interfaces. A challenging objective is to design an activity recognition system that is able to exploit a redundant but unreliable WSN. We present our activity in building a novel activity recognition architecture for such a dynamic system. The architecture has a hierarchical structure where simple nodes performs gesture classification and a high level meta classifiers fuses a changing number of classifier outputs. We demonstrate the benefit of such architecture in terms of increased recognition performance, and fault and noise robustness. Furthermore we show how we can extend network lifetime by performing a performance-power trade-off. Smart objects can enhance user experience within smart environments. We present our work in extending the capabilities of the Smart Micrel Cube (SMCube), a smart object used as tangible interface within a tangible computing framework, through the development of a gesture recognition algorithm suitable for this limited computational power device. Finally the development of activity recognition techniques can greatly benefit from the availability of shared dataset. We report our experience in building a dataset for activity recognition. Such dataset is freely available to the scientific community for research purposes and can be used as a testbench for developing, testing and comparing different activity recognition techniques.
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
The aim of this thesis is the elucidation of structure-properties relationship of molecular semiconductors for electronic devices. This involves the use of a comprehensive set of simulation techniques, ranging from quantum-mechanical to numerical stochastic methods, and also the development of ad-hoc computational tools. In more detail, the research activity regarded two main topics: the study of electronic properties and structural behaviour of liquid crystalline (LC) materials based on functionalised oligo(p-phenyleneethynylene) (OPE), and the investigation on the electric field effect associated to OFET operation on pentacene thin film stability. In this dissertation, a novel family of substituted OPE liquid crystals with applications in stimuli-responsive materials is presented. In more detail, simulations can not only provide evidence for the characterization of the liquid crystalline phases of different OPEs, but elucidate the role of charge transfer states in donor-acceptor LCs containing an endohedral metallofullerene moiety. Such systems can be regarded as promising candidates for organic photovoltaics. Furthermore, exciton dynamics simulations are performed as a way to obtain additional information about the degree of order in OPE columnar phases. Finally, ab initio and molecular mechanics simulations are used to investigate the influence of an applied electric field on pentacene reactivity and stability. The reaction path of pentacene thermal dimerization in the presence of an external electric field is investigated; the results can be related to the fatigue effect observed in OFETs, that show significant performance degradation even in the absence of external agents. In addition to this, the effect of the gate voltage on a pentacene monolayer are simulated, and the results are then compared to X-ray diffraction measurements performed for the first time on operating OFETs.
Resumo:
Wearable electronic textiles are an emerging research field playing a pivotal role among several different technological areas such as sensing, communication, clothing, health monitoring, information technology, and microsystems. The possibility to realise a fully-textile platform, endowed with various sensors directly realised with textile fibres and fabric, represents a new challenge for the entire research community. Among several high-performing materials, the intrinsically conductive poly(3,4-ethylenedioxythiophene) (PEDOT), doped with poly(styrenesulfonic acid) (PSS), or PEDOT:PSS, is one of the most representative and utilised, having an excellent chemical and thermal stability, as well as reversible doping state and high conductivity. This work relies on PEDOT:PSS combined with sensible materials to design, realise, and develop textile chemical and physical sensors. In particular, chloride concentration and pH level sensors in human sweat for continuous monitoring of the wearer's hydration status and stress level are reported. Additionally, a prototype smart bandage detecting the moisture level and pH value of a bed wound to allow the remote monitoring of the healing process of severe and chronic wounds is described. Physical sensors used to monitor the pressure distribution for rehabilitation, workplace safety, or sport tracking are also presented together with a novel fully-textile device able to measure the incident X-ray dose for medical or security applications where thin, comfortable, and flexible features are essential. Finally, a proof-of-concept for an organic-inorganic textile thermoelectric generator that harvests energy directly from body heat has been proposed. Though further efforts must be dedicated to overcome issues such as durability, washability, power consumption, and large-scale production, the novel, versatile, and widely encompassing area of electronic textiles is a promising protagonist in the upcoming technological revolution.
Resumo:
The field of medical devices has experienced, more than others, technological advances, developments and innovations, thanks to the rapidly expanding scientific knowledge and collaboration between different disciplines such as biology, engineering and materials science. The design of functional components can be achieved by exploiting composite materials based on nanostructured smart materials, that due to the inherent characteristics of single constituents develop unique properties that make them suitable for different applications preserving excellent mechanical proprieties. For instance, recent developments have focused on the fabrication of piezoelectric devices with multiple biomedical functions, as actuation and sensing functions in one component for monitoring pressure signals. The present Ph.D. Thesis aims at investigating nanostructured smart materials embedded into a polymeric matrix to obtain a composite material that can be used as a functional component for medical devices. (i) Nanostructured piezoelectric material with self-sensing capability was successfully manufactured by using ceramic (i.e. lead zirconate titanate (PZT)) and (ii) polymeric (i.e. poly(vinylidene fluoride-trifluoro ethylene (PVDF-TRFE)) piezoelectric materials. PZT nanofibers were obtained by sol-gel electrospinning starting from synthetized PZT precursor solution. Synthesis, sol-gel electrospinning process, and thermal treatment were accurately controlled to obtain PZT nanofibers dimensionally stable with densely packed grains in the perovskite phase. To guarantee the impact resistance of the laminate, the morphology and size of the hosting filler were accurately designed by increasing the surface area to volume ratio. Moreover, to solve the issue relative to the mechanical discrepancy between rigid electronic materials/soft human tissues/different material of the device (iii) a nanostructured flexible composite material based on a network of Poly-L-lactic acid (PLLA) made of curled nanofibers that present a tuneable mechanical response as a function of the applied stress was successful fabricated.
Resumo:
Power electronic circuits are moving towards higher switching frequencies, exploiting the capabilities of novel devices to shrink the dimension of passive components. This trend demands sensors capable enough to operate at such high frequencies. This thesis aims to demonstrate through experimental characterization, the broadband capability of a fully integrated CMOS X-Hall current sensor in current mode interfaced with a transimpedance amplifier (TIA), chip CH09, realized in CMOS technology for power electronics applications such as power converters. The system exploits a common-mode control system to operate the dual supply system, 5-V for the X-Hall probe and 1.2-V for the readout. The developed prototype achieves a maximum acquisition bandwidth of 12 MHz, a power consumption of 11.46 mW, resolution of 39 mArms, a sensitivity of 8 % /T, and a FoM of 569-MHz/A2mW, significantly higher than current state-of-the-art. Further enhancements were proposed to CH09 as a new chip CH100, aiming for accuracy levels prerequisite for a real-time power electronic application. The TIA was optimized for a wider bandwidth of 26.7 MHz with nearly 30% reduction of the integrated input referred noise of 26.69 nArms at the probe-AFE interface in the frequency band of DC-30 MHz, and a 10% improvement in the dynamic range. The expected input range is 5-A. The chip incorporates a dual sensing chain for differential sensing to overcome common mode interferences. A novel offset cancellation technique is proposed that would require switching of polarity of bias currents. Thermal gain drift was improved by a factor of 8 and will be digitally calibrated utilizing a new built-in temperature sensor with a post calibration measurement accuracy greater than 1%. The estimated power consumption of the entire system is 55.6 mW. Both prototypes have been implemented through a 90-nm microelectronic process from STMicroelectronics and occupy a silicon area of 2.4 mm2.