2 resultados para Skin ageing
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
During the last few years, several methods have been proposed in order to study and to evaluate characteristic properties of the human skin by using non-invasive approaches. Mostly, these methods cover aspects related to either dermatology, to analyze skin physiology and to evaluate the effectiveness of medical treatments in skin diseases, or dermocosmetics and cosmetic science to evaluate, for example, the effectiveness of anti-aging treatments. To these purposes a routine approach must be followed. Although very accurate and high resolution measurements can be achieved by using conventional methods, such as optical or mechanical profilometry for example, their use is quite limited primarily to the high cost of the instrumentation required, which in turn is usually cumbersome, highlighting some of the limitations for a routine based analysis. This thesis aims to investigate the feasibility of a noninvasive skin characterization system based on the analysis of capacitive images of the skin surface. The system relies on a CMOS portable capacitive device which gives 50 micron/pixel resolution capacitance map of the skin micro-relief. In order to extract characteristic features of the skin topography, image analysis techniques, such as watershed segmentation and wavelet analysis, have been used to detect the main structures of interest: wrinkles and plateau of the typical micro-relief pattern. In order to validate the method, the features extracted from a dataset of skin capacitive images acquired during dermatological examinations of a healthy group of volunteers have been compared with the age of the subjects involved, showing good correlation with the skin ageing effect. Detailed analysis of the output of the capacitive sensor compared with optical profilometry of silicone replica of the same skin area has revealed potentiality and some limitations of this technology. Also, applications to follow-up studies, as needed to objectively evaluate the effectiveness of treatments in a routine manner, are discussed.
Resumo:
Prokaryotic organisms are one of the most successful forms of life, they are present in all known ecosystems. The deluge diversity of bacteria reflects their ability to colonise every environment. Also, human beings host trillions of microorganisms in their body districts, including skin, mucosae, and gut. This symbiosis is active for all other terrestrial and marine animals, as well as plants. With the term holobiont we refer, with a single word, to the systems including both the host and its symbiotic microbial species. The coevolution of bacteria within their ecological niches reflects the adaptation of both host and guest species, and it is shaped by complex interactions that are pivotal for determining the host state. Nowadays, thanks to the current sequencing technologies, Next Generation Sequencing, we have unprecedented tools for investigating the bacterial life by studying the prokaryotic genome sequences. NGS revolution has been sustained by the advancements in computational performance, in terms of speed, storage capacity, algorithm development and hardware costs decreasing following the Moore’s Law. Bioinformaticians and computational biologists design and implement ad hoc tools able to analyse high-throughput data and extract valuable biological information. Metagenomics requires the integration of life and computational sciences and it is uncovering the deluge diversity of the bacterial world. The present thesis work focuses mainly on the analysis of prokaryotic genomes under different aspects. Being supervised by two groups at the University of Bologna, the Biocomputing group and the group of Microbial Ecology of Health, I investigated three different topics: i) antimicrobial resistance, particularly with respect to missense point mutations involved in the resistant phenotype, ii) bacterial mechanisms involved in xenobiotic degradation via the computational analysis of metagenomic samples, and iii) the variation of the human gut microbiota through ageing, in elderly and longevous individuals.