2 resultados para Sjöberg, Agnes
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The main objective of this research is to improve the comprehension of the processes controlling the formation of caves and karst-like morphologies in quartz-rich lithologies (more than 90% quartz), like quartz-sandstones and metamorphic quartzites. In the scientific community the processes actually most retained to be responsible of these formations are explained in the “Arenisation Theory”. This implies a slow but pervasive dissolution of the quartz grain/mineral boundaries increasing the general porosity until the rock becomes incohesive and can be easily eroded by running waters. The loose sands produced by the weathering processes are then evacuated to the surface through processes of piping due to the infiltration of waters from the fracture network or the bedding planes. To deal with these problems we adopted a multidisciplinary approach through the exploration and the study of several cave systems in different tepuis. The first step was to build a theoretical model of the arenisation process, considering the most recent knowledge about the dissolution kinetics of quartz, the intergranular/grain boundaries diffusion processes, the primary diffusion porosity, in the simplified conditions of an open fracture crossed by a continuous flow of undersatured water. The results of the model were then compared with the world’s widest dataset (more than 150 analyses) of water geochemistry collected till now on the tepui, in superficial and cave settings. All these studies allowed verifying the importance and the effectiveness of the arenisation process that is confirmed to be the main process responsible of the primary formation of these caves and of the karst-like superficial morphologies. The numerical modelling and the field observations allowed evaluating a possible age of the cave systems around 20-30 million of years.
Resumo:
The aim of this research is to improve the understanding of the factors that control the formation of karst porosity in hypogene settings and its associated patterns of void-conduit networks. Subsurface voids created by hypogene dissolution may span from few microns to decametric tubes providing interconnected conduit systems and forming highly anisotropic permeability domains in many reservoirs. Characterizing the spatial-morphological organization of hypogene karst is a challenging task that has dramatic implications for the applied industry, given that only partial data can be acquired from the subsurface by indirect techniques. Therefore, two outcropping cave analogues are examined: the Cavallone-Bove Cave in the Majella Massif (Italy), and the karst systems of the Salitre Formation (Brazil). In the latter, a peculiar example of hypogene speleogenesis associated with silicification has been studied, providing an analogue of many karstified reservoirs hosted in cherts or cherty-carbonates within mixed sedimentary sequences. The first part of the thesis is focused on the relationships between fracture patterns and flow pathways in deformed units in: 1) a fold-and-thrust setting (Majella Massif); 2) a cratonic block (Brazil). These settings represent potential playgrounds for the migration and accumulation of geofluids, where hypogene conduits may affect flow pathways, fluid storage, and reservoir properties. The results indicate that localized deformation producing cross-formational fracture zones associated with anticline hinges or fault damage zones is critical for hypogene fluid migration and karstification. The second part of the thesis deals with the multidisciplinary study of hydrothermal silicification and hypogene dissolution in Calixto Cave (Brazil). Petrophysical analyses and a geochemical characterization of silica deposits are used to unravel the spatial-morphological organization of the conduit system and its speleogenesis. The novel results obtained from this cave shed new light on the relationship between hydrothermal silicification, hypogene dissolution and the development of multistorey cave systems in layered carbonate-siliciclastic sequences.