3 resultados para Single reaction interface flow analysis

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive sample (2%) of private vehicles in Italy are equipped with a GPS device that periodically measures their position and dynamical state for insurance purposes. Having access to this type of data allows to develop theoretical and practical applications of great interest: the real-time reconstruction of traffic state in a certain region, the development of accurate models of vehicle dynamics, the study of the cognitive dynamics of drivers. In order for these applications to be possible, we first need to develop the ability to reconstruct the paths taken by vehicles on the road network from the raw GPS data. In fact, these data are affected by positioning errors and they are often very distanced from each other (~2 Km). For these reasons, the task of path identification is not straightforward. This thesis describes the approach we followed to reliably identify vehicle paths from this kind of low-sampling data. The problem of matching data with roads is solved with a bayesian approach of maximum likelihood. While the identification of the path taken between two consecutive GPS measures is performed with a specifically developed optimal routing algorithm, based on A* algorithm. The procedure was applied on an off-line urban data sample and proved to be robust and accurate. Future developments will extend the procedure to real-time execution and nation-wide coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water is a safe, harmless, and environmentally benign solvent. From an eco-sustainable chemistry perspective, the use of water instead of organic solvent is preferred to decrease environmental contamination. Moreover, water has unique physical and chemical properties, such as high dielectric constant and high cohesive energy density compared to most organic solvents. The different interactions between water and substrates, make water an interesting candidate as a solvent or co-solvent from an industrial and laboratory perspective. In this regard, organic reactions in aqueous media are of current interest. In addition, from practical and synthetic standpoints, a great advantage of using water is immediately evident, since it does not require any preliminary drying process. This thesis was found on this aspect of chemical research, with particular attention to the mechanisms which control organo and bio-catalysis outcome. The first part of the study was focused on the aldol reaction. In particular, for the first time it has been analyzed for the first time the stereoselectivity of the condensation reaction between 3-pyridincarbaldehyde and the cyclohexanone, catalyzed by morpholine and 4-tertbutyldimethylsiloxyproline, using water as sole solvent. This interest has resulted in countless works appeared in the literature concerning the use of proline derivatives as effective catalysts in organic aqueous environment. These studies showed good enantio and diastereoselectivities but they did not present an in depth study of the reaction mechanism. The analysis of the products diastereomeric ratios through the Eyring equation allowed to compare the activation parameters (ΔΔH≠ and ΔΔS≠) of the diastereomeric reaction paths, and to compare the different type of catalysis. While morpholine showed constant diasteromeric ratio at all temperatures, the O(TBS)-L-proline, showed a non-linear Eyring diagram, with two linear trends and the presence of an inversion temperature (Tinv) at 53 ° C, which denotes the presence of solvation effects by water. A pH-dependent study allowed to identify two different reaction mechanisms, and in the case of O(TBS)-L-proline, to ensure the formation of an enaminic species, as a keyelement in the stereoselective process. Moreover, it has been studied the possibility of using the 6- aminopenicillanic acid (6-APA) as amino acid-type catalyst for aldol condensation between cyclohexanone and aromatic aldehydes. A detailed analysis of the catalyst regarding its behavior in different organic solvents and pH, allowed to prove its potential as a candidate for green catalysis. Best results were obtained in neat conditions, where 6-APA proved to be an effective catalyst in terms of yields. The catalyst performance in terms of enantio- and diastereo-selectivity, was impaired by the competition between two different catalytic mechanisms: one via imine-enamine mechanism and one via a Bronsted-acid catalysis. The last part of the thesis was dedicated to the enzymatic catalysis, with particular attention to the use of an enzyme belonging to the class of alcohol dehydrogenase, the Horse Liver Alcohol Dehydrogenase (HLADH) which was selected and used in the enantioselective reduction of aldehydes to enantiopure arylpropylic alcohols. This enzyme has showed an excellent responsiveness to this type of aldehydes and a good tolerance toward organic solvents. Moreover, the fast keto-enolic equilibrium of this class of aldehydes that induce the stereocentre racemization, allows the dynamic-kinetic resolution (DKR) to give the enantiopure alcohol. By analyzing the different reaction parameters, especially the pH and the amount of enzyme, and adding a small percentage of organic solvent, it was possible to control all the parameters involved in the reaction. The excellent enatioselectivity of HLADH along with the DKR of arylpropionic aldehydes, allowed to obtain the corresponding alcohols in quantitative yields and with an optical purity ranging from 64% to >99%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi di Dottorato studia il flusso sanguigno tramite un codice agli elementi finiti (COMSOL Multiphysics). Nell’arteria è presente un catetere Doppler (in posizione concentrica o decentrata rispetto all’asse di simmetria) o di stenosi di varia forma ed estensione. Le arterie sono solidi cilindrici rigidi, elastici o iperelastici. Le arterie hanno diametri di 6 mm, 5 mm, 4 mm e 2 mm. Il flusso ematico è in regime laminare stazionario e transitorio, ed il sangue è un fluido non-Newtoniano di Casson, modificato secondo la formulazione di Gonzales & Moraga. Le analisi numeriche sono realizzate in domini tridimensionali e bidimensionali, in quest’ultimo caso analizzando l’interazione fluido-strutturale. Nei casi tridimensionali, le arterie (simulazioni fluidodinamiche) sono infinitamente rigide: ricavato il campo di pressione si procede quindi all’analisi strutturale, per determinare le variazioni di sezione e la permanenza del disturbo sul flusso. La portata sanguigna è determinata nei casi tridimensionali con catetere individuando tre valori (massimo, minimo e medio); mentre per i casi 2D e tridimensionali con arterie stenotiche la legge di pressione riproduce l’impulso ematico. La mesh è triangolare (2D) o tetraedrica (3D), infittita alla parete ed a valle dell’ostacolo, per catturare le ricircolazioni. Alla tesi sono allegate due appendici, che studiano con codici CFD la trasmissione del calore in microcanali e l’ evaporazione di gocce d’acqua in sistemi non confinati. La fluidodinamica nei microcanali è analoga all’emodinamica nei capillari. Il metodo Euleriano-Lagrangiano (simulazioni dell’evaporazione) schematizza la natura mista del sangue. La parte inerente ai microcanali analizza il transitorio a seguito dell’applicazione di un flusso termico variabile nel tempo, variando velocità in ingresso e dimensioni del microcanale. L’indagine sull’evaporazione di gocce è un’analisi parametrica in 3D, che esamina il peso del singolo parametro (temperatura esterna, diametro iniziale, umidità relativa, velocità iniziale, coefficiente di diffusione) per individuare quello che influenza maggiormente il fenomeno.