2 resultados para Single lap joints
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The objective of this thesis is the investigation of the Mode-I fracture mechanics parameters of quasi-brittle materials to shed light onto the influence of the width and size of the specimen on the fracture response of notched beams. To further the knowledge on the fracture process, 3D digital image correlation (DIC) was employed. A new method is proposed to determine experimentally the critical value of the crack opening, which is then used to determine the size of the fracture process zone (FPZ). In addition, the Mode-I fracture mechanics parameters are compared with the Mode-II interfacial properties of composites materials that feature as matrices the quasi-brittle materials studied in Mode-I conditions. To investigate the Mode II fracture parameters, single-lap direct shear tests are performed. Notched concrete beams with six cross-sections has been tested using a three-point bending (TPB) test set-up (Mode-I fracture mechanics). Two depths and three widths of the beam are considered. In addition to concrete beams, alkali-activated mortar beams (AAMs) that differ by the type and size of the aggregates have been tested using the same TPB set-up. Two dimensions of AAMs are considered. The load-deflection response obtained from DIC is compared with the load-deflection response obtained from the readings of two linear variable displacement transformers (LVDT). Load responses, peak loads, strain profiles along the ligament from DIC, fracture energy and failure modes of TPB tests are discussed. The Mode-II problem is investigated by testing steel reinforced grout (SRG) composites bonded to masonry and concrete elements under single-lap direct shear tests. Two types of anchorage systems are proposed for SRG reinforced masonry and concrete element to study their effectiveness. An indirect method is proposed to find the interfacial properties, compare them with the Mode-I fracture properties of the matrix and to model the effect of the anchorage.
Resumo:
In recent years, the seismic vulnerability of existing masonry buildings has been underscored by the destructive impacts of earthquakes. Therefore, Fibre Reinforced Cementitious Matrix (FRCM) retrofitting systems have gained prominence due to their high strength-to-weight ratio, compatibility with substrates, and potential reversibility. However, concerns linger regarding the durability of these systems when subjected to long-term environmental conditions. This doctoral dissertation addressed these concerns by studying the effects of mild temperature variations on three FRCM systems, featuring basalt, glass, and aramid fibre textiles with lime-based mortar matrices. The study subjected various specimens, including mortar triplets, bare textile specimens, FRCM coupons, and single-lap direct shear wallets, to thermal exposure. A novel approach utilizing embedded thermocouple sensors facilitated efficient monitoring and active control of the conditioning process. A shift in the failure modes was obtained in the single lap-direct shear tests, alongside a significant impact on tensile capacity for both textiles and FRCM coupons. Subsequently, bond tests results were used to indirectly calibrate an analytical approach based on mode-II fracture mechanics. A comparison between Cohesive Material Law (CML) functions at various temperatures was conducted for each of the three systems, demonstrating a good agreement between the analytical model and experimental curves. Furthermore, the durability in alkaline environment of two additional FRCM systems, characterized by basalt and glass fibre textiles with lime-based mortars, was studied through an extensive experimental campaign. Tests conducted on single yarn and textile specimens after exposure at different durations and temperatures revealed a significant impact on tensile capacity. Additionally, FRCM coupons manufactured with conditioned textile were tested to understand the influence of aged textile and curing environment on the final tensile behavior. These results contributed significantly to the existing knowledge on FRCM systems and could be used to develop a standardized alkaline testing protocol, still lacking in the scientific literature.