3 resultados para Single Health Sistem

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uropathogenic Escherichia coli (UPEC) accounts for approximately 85% of all urinary tract infections (UTIs), causing a global economic burden. E. coli is one of the pathogens mentioned in the ESKAPEE list drafted by OMS, meaning that the increasing antibiotic resistance acquired by UPEC is and will be a serious health problem in the future. Amongst the immunogenic antigens exposed on the surface of UPEC, FimH represent a potential target for vaccine development, since it is involved in the early stages of infection. As already demonstrated, immunizations with FimH elicit functional antibodies that prevent UPEC infections even though the number of doses required to elicit a strong immune response is not optimal. In this work, we aimed to stabilize FimH as a soluble recombinant antigen exploiting the donor strand complementation mechanism by generating different chimeric constructs constituted by FimH and FimG donor strand. To explore the potential of self-assembling nanoparticles to display FimH through genetic fusion, different constructs have been computationally designed and produced. In this work a structure-based design, using available crystal structures of FimH and three different NPs was performed to generate different constructs with optimized properties. Despite the different conditions tested, all the constructs designed (single antigen or chimeric NPs), resulted to be un-soluble proteins in E. coli. To overcome this issue a mammalian expression system has been tested. Soluble antigen expression was achieved for all constructs tested in the culture supernatants. Three novel chimeric NPs have been characterized by transmission electron microscopy (TEM) confirming the presence of correctly assembled NPs displaying UPEC antigen. In vivo study has shown a higher immunogenicity of the E. coli antigen when displayed on NPs surface compared to the single recombinant antigen. The antibodies elicited by chimeric NPs showed a higher functionality in the inhibition of bacterial adhesion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Structural Health Monitoring (SHM) research area is increasingly investigated due to its high potential in reducing the maintenance costs and in ensuring the systems safety in several industrial application fields. A growing demand of new SHM systems, permanently embedded into the structures, for savings in weight and cabling, comes from the aeronautical and aerospace application fields. As consequence, the embedded electronic devices are to be wirelessly connected and battery powered. As result, a low power consumption is requested. At the same time, high performance in defects or impacts detection and localization are to be ensured to assess the structural integrity. To achieve these goals, the design paradigms can be changed together with the associate signal processing. The present thesis proposes design strategies and unconventional solutions, suitable both for real-time monitoring and periodic inspections, relying on piezo-transducers and Ultrasonic Guided Waves. In the first context, arrays of closely located sensors were designed, according to appropriate optimality criteria, by exploiting sensors re-shaping and optimal positioning, to achieve improved damages/impacts localisation performance in noisy environments. An additional sensor re-shaping procedure was developed to tackle another well-known issue which arises in realistic scenario, namely the reverberation. A novel sensor, able to filter undesired mechanical boundaries reflections, was validated via simulations based on the Green's functions formalism and FEM. In the active SHM context, a novel design methodology was used to develop a single transducer, called Spectrum-Scanning Acoustic Transducer, to actively inspect a structure. It can estimate the number of defects and their distances with an accuracy of 2[cm]. It can also estimate the damage angular coordinate with an equivalent mainlobe aperture of 8[deg], when a 24[cm] radial gap between two defects is ensured. A suitable signal processing was developed in order to limit the computational cost, allowing its use with embedded electronic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The early identification of responsive and resistant patients to androgen-receptor targeting agents (ARTA) in metastatic castration resistant-prostate cancer (CRPC) is not completely possible with PSA assessment and conventional imaging. Considering its ability to determine metabolic activity of lesions, PET assessment might be a promising tool. Materials and methods: We performed a monocentric prospective study in patients with metastatic CRPC under treatment with ARTA to evaluate the role of different PET radiotracers: 49 patients were randomized to receive 11C-Choline, 18F-FACBC or 68Ga-PSMA PET, one scan before therapy onset and one two months later. The primary aim was to investigate the performance of three different novel PET radiotracers for the early evaluation of response to ARTA in metastatic CRPC patients; with regards to this aim, the outcome evaluated was biochemical response (PSA reduction ≥50%). The secondary aim was to investigate the prognostic role of several semiquantitative PET parameters and their variations with the different radiotracers in terms of biochemical PFS (bPFS) and overall survival (OS). The study was promoted by the Italian Department of Health (code RF-2016-02364809). Results: With regards to the primary endpoint, at univariate analysis a statistically significant correlation was found between MTV_VARIATION% (p=0.018) and TLA_VARIATION% (p=0.025) with 68Ga-PSMA PET and biochemical response. As for the secondary endpoints, significant correlations with bPFS were found for 68Ga-PSMA PET MTV_TOT_PET1 (p=0.001), TLA_TOT_PET1 (p=0.025), MTV_VARIATION% (p=0.031). For OS, statistically significant correlations were found for: MAJ_SUV_MAX_PET1 with 11C-Choline PET (p=0.007); MTV_TOT_PET1 (p=0.004), MAJ_SUV_MAX_PET1 (p=0.029), SUVMAX_VARIATION% (p=0.04), MTV_VARIATION% (p=0.015), TLA_VARIATION% (p=0.03) with 68Ga-PSMA PET,; MTV_TOT_PET1 (p=0.011), TLA_TOT_PET1 (p=0.009), MAJ_SUV_MAX_PET1 (p=0.027), MTV_VARIATION% (p=0.048) with 18F-FACBC. Conclusions: Our prospective study highlighted that several 68Ga-PSMA and 18F-FACBC semiquantitative PET parameters and their variations present a prognostic value in terms of OS and bPFS and a correlation with biochemical response, that could help to assess response to ARTA.