10 resultados para Signal-to Noise Ratio (SNR)

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the first underground nuclear explosion, carried out in 1958, the analysis of seismic signals generated by these sources has allowed seismologists to refine the travel times of seismic waves through the Earth and to verify the accuracy of the location algorithms (the ground truth for these sources was often known). Long international negotiates have been devoted to limit the proliferation and testing of nuclear weapons. In particular the Treaty for the comprehensive nuclear test ban (CTBT), was opened to signatures in 1996, though, even if it has been signed by 178 States, has not yet entered into force, The Treaty underlines the fundamental role of the seismological observations to verify its compliance, by detecting and locating seismic events, and identifying the nature of their sources. A precise definition of the hypocentral parameters represents the first step to discriminate whether a given seismic event is natural or not. In case that a specific event is retained suspicious by the majority of the State Parties, the Treaty contains provisions for conducting an on-site inspection (OSI) in the area surrounding the epicenter of the event, located through the International Monitoring System (IMS) of the CTBT Organization. An OSI is supposed to include the use of passive seismic techniques in the area of the suspected clandestine underground nuclear test. In fact, high quality seismological systems are thought to be capable to detect and locate very weak aftershocks triggered by underground nuclear explosions in the first days or weeks following the test. This PhD thesis deals with the development of two different seismic location techniques: the first one, known as the double difference joint hypocenter determination (DDJHD) technique, is aimed at locating closely spaced events at a global scale. The locations obtained by this method are characterized by a high relative accuracy, although the absolute location of the whole cluster remains uncertain. We eliminate this problem introducing a priori information: the known location of a selected event. The second technique concerns the reliable estimates of back azimuth and apparent velocity of seismic waves from local events of very low magnitude recorded by a trypartite array at a very local scale. For the two above-mentioned techniques, we have used the crosscorrelation technique among digital waveforms in order to minimize the errors linked with incorrect phase picking. The cross-correlation method relies on the similarity between waveforms of a pair of events at the same station, at the global scale, and on the similarity between waveforms of the same event at two different sensors of the try-partite array, at the local scale. After preliminary tests on the reliability of our location techniques based on simulations, we have applied both methodologies to real seismic events. The DDJHD technique has been applied to a seismic sequence occurred in the Turkey-Iran border region, using the data recorded by the IMS. At the beginning, the algorithm was applied to the differences among the original arrival times of the P phases, so the cross-correlation was not used. We have obtained that the relevant geometrical spreading, noticeable in the standard locations (namely the locations produced by the analysts of the International Data Center (IDC) of the CTBT Organization, assumed as our reference), has been considerably reduced by the application of our technique. This is what we expected, since the methodology has been applied to a sequence of events for which we can suppose a real closeness among the hypocenters, belonging to the same seismic structure. Our results point out the main advantage of this methodology: the systematic errors affecting the arrival times have been removed or at least reduced. The introduction of the cross-correlation has not brought evident improvements to our results: the two sets of locations (without and with the application of the cross-correlation technique) are very similar to each other. This can be commented saying that the use of the crosscorrelation has not substantially improved the precision of the manual pickings. Probably the pickings reported by the IDC are good enough to make the random picking error less important than the systematic error on travel times. As a further justification for the scarce quality of the results given by the cross-correlation, it should be remarked that the events included in our data set don’t have generally a good signal to noise ratio (SNR): the selected sequence is composed of weak events ( magnitude 4 or smaller) and the signals are strongly attenuated because of the large distance between the stations and the hypocentral area. In the local scale, in addition to the cross-correlation, we have performed a signal interpolation in order to improve the time resolution. The algorithm so developed has been applied to the data collected during an experiment carried out in Israel between 1998 and 1999. The results pointed out the following relevant conclusions: a) it is necessary to correlate waveform segments corresponding to the same seismic phases; b) it is not essential to select the exact first arrivals; and c) relevant information can be also obtained from the maximum amplitude wavelet of the waveforms (particularly in bad SNR conditions). Another remarkable point of our procedure is that its application doesn’t demand a long time to process the data, and therefore the user can immediately check the results. During a field survey, such feature will make possible a quasi real-time check allowing the immediate optimization of the array geometry, if so suggested by the results at an early stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monte Carlo (MC) simulation techniques are becoming very common in the Medical Physicists community. MC can be used for modeling Single Photon Emission Computed Tomography (SPECT) and for dosimetry calculations. 188Re, is a promising candidate for radiotherapeutic production and understanding the mechanisms of the radioresponse of tumor cells "in vitro" is of crucial importance as a first step before "in vivo" studies. The dosimetry of 188Re, used to target different lines of cancer cells, has been evaluated by the MC code GEANT4. The simulations estimate the average energy deposition/per event in the biological samples. The development of prototypes for medical imaging, based on LaBr3:Ce scintillation crystals coupled with a position sensitive photomultiplier, have been studied using GEANT4 simulations. Having tested, in the simulation, surface treatments different from the one applied to the crystal used in our experimental measurements, we found out that the Energy Resolution (ER) and the Spatial Resolution (SR) could be improved, in principle, by machining in a different way the lateral surfaces of the crystal. We have then studied a system able to acquire both echographic and scintigraphic images to let the medical operator obtain the complete anatomic and functional information for tumor diagnosis. The scintigraphic part of the detector is simulated by GEANT4 and first attempts to reconstruct tomographic images have been made using as method of reconstruction a back-projection standard algorithm. The proposed camera is based on slant collimators and LaBr3:Ce crystals. Within the Field of View (FOV) of the camera, it possible to distinguish point sources located in air at a distance of about 2 cm from each other. In particular conditions of uptake, tumor depth and dimension, the preliminary results show that the Signal to Noise Ratio (SNR) values obtained are higher than the standard detection limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigation on impulsive signals, originated from Partial Discharge (PD) phenomena, represents an effective tool for preventing electric failures in High Voltage (HV) and Medium Voltage (MV) systems. The determination of both sensors and instruments bandwidths is the key to achieve meaningful measurements, that is to say, obtaining the maximum Signal-To-Noise Ratio (SNR). The optimum bandwidth depends on the characteristics of the system under test, which can be often represented as a transmission line characterized by signal attenuation and dispersion phenomena. It is therefore necessary to develop both models and techniques which can characterize accurately the PD propagation mechanisms in each system and work out the frequency characteristics of the PD pulses at detection point, in order to design proper sensors able to carry out PD measurement on-line with maximum SNR. Analytical models will be devised in order to predict PD propagation in MV apparatuses. Furthermore, simulation tools will be used where complex geometries make analytical models to be unfeasible. In particular, PD propagation in MV cables, transformers and switchgears will be investigated, taking into account both irradiated and conducted signals associated to PD events, in order to design proper sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An amperometric glucose biosensor was developed using an anionic clay matrix (LDH) as enzyme support. The enzyme glucose oxidase (GOx) was immobilized on a layered double hydroxide Ni/Al-NO3 LDH during the electrosynthesis, which was followed by crosslinking with glutaraldehyde (GA) vapours or with GA and bovine serum albumin (GABSA) to avoid the enzyme release. The electrochemical reaction was carried out potentiostatically, at -0.9V vs. SCE, using a rotating disc Pt electrode to assure homogeneity of the electrodeposition suspension, containing GOx, Ni(NO3)2 and Al(NO3)3 in 0.3 M KNO3. The mechanism responsible of the LDH electrodeposition involves the precipitation of the LDH due to the increase of pH at the surface of the electrode, following the cathodic reduction of nitrates. The Pt surface modified with the Ni/Al-NO3 LDH shows a much reduced noise, giving rise to a better signal to noise ratio for the currents relative to H2O2 oxidation, and a linear range for H2O2 determination wider than the one observed for bare Pt electrodes. We pointed out the performances of the biosensor in terms of sensitivity to glucose, calculated from the slope of the linear part of the calibration curve for enzimatically produced H2O2; the sensitivity was dependent on parameters related to the electrodeposition in addition to working conditions. In order to optimise the glucose biosensor performances, with a reduced number of experimental runs, we applied an experimental design. A first screening was performed considering the following variables: deposition time (30 - 120 s), enzyme concentration (0.5 - 3.0 mg/mL), Ni/Al molar ratio (3:1 or 2:1) of the electrodeposition solution at a total metals concentration of 0.03 M and pH of the working buffer solution (5.5-7.0). On the basis of the results from this screening, a full factorial design was carried out, taking into account only enzyme concentration and Ni/Al molar ratio of the electrosynthesis solution. A full factorial design was performed to study linear interactions between factors and their quadratic effects and the optimal setup was evaluated by the isoresponse curves. The significant factors were: enzyme concentration (linear and quadratic terms) and the interaction between enzyme concentration and Ni/Al molar ratio. Since the major obstacle for application of amperometric glucose biosensors is the interference signal resulting from other electro-oxidizable species present in the real matrices, such as ascorbate (AA), the use of different permselective membranes on Pt-LDHGOx modified electrode was discussed with the aim of improving biosensor selectivity and stability. Conventional membranes obtained using Nafion, glutaraldehyde (GA) vapours, GA-BSA were tested together with more innovative materials like palladium hexacyanoferrate (PdHCF) and titania hydrogels. Particular attention has been devoted to hydrogels, because they possess some attractive features, which are generally considered to favour biosensor materials biocompatibility and, consequently, the functional enzyme stability. The Pt-LDH-GOx-PdHCF hydrogel biosensor presented an anti-interferant ability so that to be applied for an accurate glucose analysis in blood. To further improve the biosensor selectivity, protective membranes containing horseradish peroxidase (HRP) were also investigated with the aim of oxidising the interferants before they reach the electrode surface. In such a case glucose determination was also accomplished in real matrices with high AA content. Furthermore, the application of a LDH containing nickel in the oxidised state was performed not only as a support for the enzyme, but also as anti-interferant sistem. The result is very promising and it could be the starting point for further applications in the field of amperometric biosensors; the study could be extended to other oxidase enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid technologies, thanks to the convergence of integrated microelectronic devices and new class of microfluidic structures could open new perspectives to the way how nanoscale events are discovered, monitored and controlled. The key point of this thesis is to evaluate the impact of such an approach into applications of ion-channel High Throughput Screening (HTS)platforms. This approach offers promising opportunities for the development of new classes of sensitive, reliable and cheap sensors. There are numerous advantages of embedding microelectronic readout structures strictly coupled to sensing elements. On the one hand the signal-to-noise-ratio is increased as a result of scaling. On the other, the readout miniaturization allows organization of sensors into arrays, increasing the capability of the platform in terms of number of acquired data, as required in the HTS approach, to improve sensing accuracy and reliabiity. However, accurate interface design is required to establish efficient communication between ionic-based and electronic-based signals. The work made in this thesis will show a first example of a complete parallel readout system with single ion channel resolution, using a compact and scalable hybrid architecture suitable to be interfaced to large array of sensors, ensuring simultaneous signal recording and smart control of the signal-to-noise ratio and bandwidth trade off. More specifically, an array of microfluidic polymer structures, hosting artificial lipid bilayers blocks where single ion channel pores are embededed, is coupled with an array of ultra-low noise current amplifiers for signal amplification and data processing. As demonstrating working example, the platform was used to acquire ultra small currents derived by single non-covalent molecular binding between alpha-hemolysin pores and beta-cyclodextrin molecules in artificial lipid membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Array seismology is an useful tool to perform a detailed investigation of the Earth’s interior. Seismic arrays by using the coherence properties of the wavefield are able to extract directivity information and to increase the ratio of the coherent signal amplitude relative to the amplitude of incoherent noise. The Double Beam Method (DBM), developed by Krüger et al. (1993, 1996), is one of the possible applications to perform a refined seismic investigation of the crust and mantle by using seismic arrays. The DBM is based on a combination of source and receiver arrays leading to a further improvement of the signal-to-noise ratio by reducing the error in the location of coherent phases. Previous DBM works have been performed for mantle and core/mantle resolution (Krüger et al., 1993; Scherbaum et al., 1997; Krüger et al., 2001). An implementation of the DBM has been presented at 2D large-scale (Italian data-set for Mw=9.3, Sumatra earthquake) and at 3D crustal-scale as proposed by Rietbrock & Scherbaum (1999), by applying the revised version of Source Scanning Algorithm (SSA; Kao & Shan, 2004). In the 2D application, the rupture front propagation in time has been computed. In 3D application, the study area (20x20x33 km3), the data-set and the source-receiver configurations are related to the KTB-1994 seismic experiment (Jost et al., 1998). We used 60 short-period seismic stations (200-Hz sampling rate, 1-Hz sensors) arranged in 9 small arrays deployed in 2 concentric rings about 1 km (A-arrays) and 5 km (B-array) radius. The coherence values of the scattering points have been computed in the crustal volume, for a finite time-window along all array stations given the hypothesized origin time and source location. The resulting images can be seen as a (relative) joint log-likelihood of any point in the subsurface that have contributed to the full set of observed seismograms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The improvement of devices provided by Nanotechnology has put forward new classes of sensors, called bio-nanosensors, which are very promising for the detection of biochemical molecules in a large variety of applications. Their use in lab-on-a-chip could gives rise to new opportunities in many fields, from health-care and bio-warfare to environmental and high-throughput screening for pharmaceutical industry. Bio-nanosensors have great advantages in terms of cost, performance, and parallelization. Indeed, they require very low quantities of reagents and improve the overall signal-to-noise-ratio due to increase of binding signal variations vs. area and reduction of stray capacitances. Additionally, they give rise to new challenges, such as the need to design high-performance low-noise integrated electronic interfaces. This thesis is related to the design of high-performance advanced CMOS interfaces for electrochemical bio-nanosensors. The main focus of the thesis is: 1) critical analysis of noise in sensing interfaces, 2) devising new techniques for noise reduction in discrete-time approaches, 3) developing new architectures for low-noise, low-power sensing interfaces. The manuscript reports a multi-project activity focusing on low-noise design and presents two developed integrated circuits (ICs) as examples of advanced CMOS interfaces for bio-nanosensors. The first project concerns low-noise current-sensing interface for DC and transient measurements of electrophysiological signals. The focus of this research activity is on the noise optimization of the electronic interface. A new noise reduction technique has been developed so as to realize an integrated CMOS interfaces with performance comparable with state-of-the-art instrumentations. The second project intends to realize a stand-alone, high-accuracy electrochemical impedance spectroscopy interface. The system is tailored for conductivity-temperature-depth sensors in environmental applications, as well as for bio-nanosensors. It is based on a band-pass delta-sigma technique and combines low-noise performance with low-power requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis work is focused on the use of selected core-level x-ray spectroscopies to study semiconductor materials of great technological interest and on the development of a new implementation of appearance potential spectroscopy. Core-level spectroscopies can be exploited to study these materials with a local approach since they are sensitive to the electronic structure localized on a chemical species present in the sample examined. This approach, in fact, provides important micro-structural information that is difficult to obtain with techniques sensitive to the average properties of materials. In this thesis work we present a novel approach to the study of semiconductors with core-level spectroscopies based on an original analysis procedure that leads to an insightful understanding of the correlation between the local micro-structure and the spectral features observed. In particular, we studied the micro-structure of Hydrogen induced defects in nitride semiconductors, since the analysed materials show substantial variations of optical and electronic properties as a consequence of H incorporation. Finally, we present a novel implementation of soft x-ray appearance potential spectroscopy, a core-level spectroscopy that uses electrons as a source of excitation and has the great advantage of being an in-house technique. The original set-up illustrated was designed to reach a high signal-to-noise ratio for the acquisition of good quality spectra that can then be analyzed in the framework of the real space full multiple scattering theory. This technique has never been coupled with this analysis approach and therefore our work unite a novel implementation with an original data analysis method, enlarging the field of application of this technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing importance that nanotechnologies have in everyday life, it is not difficult to realize that also a single molecule, if properly designed, can be a device able to perform useful functions: such a chemical species is called chemosensor, that is a molecule of abiotic origin that signals the presence of matter or energy. Signal transduction is the mechanism by which an interaction of a sensor with an analyte yields a measurable form of energy. When dealing with the design of a chemosensor, we need to take into account a “communication requirement” between its three component: the receptor unit, responsible for the selective analyte binding, the spacer, which controls the geometry of the system and modulates the electronic interaction between the receptor and the signalling unit, whose physico-chemical properties change upon complexation. A luminescent chemosensor communicates a variation of the physico-chemical properties of the receptor unit with a luminescence output signal. This thesis work consists in the characterization of new molecular and nanoparticle-based system which can be used as sensitive materials for the construction of new optical transduction devices able to provide information about the concentration of analytes in solution. In particular two direction were taken. The first is to continue in the development of new chemosensors, that is the first step for the construction of reliable and efficient devices, and in particular the work will be focused on chemosensors for metal ions for biomedical and environmental applications. The second is to study more efficient and complex organized systems, such as derivatized silica nanoparticles. These system can potentially have higher sensitivity than molecular systems, and present many advantages, like the possibility to be ratiometric, higher Stokes shifts and lower signal-to-noise ratio.