16 resultados para Short take-off and landing aircraft.

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The topic of this thesis is the design and the implementation of mathematical models and control system algorithms for rotary-wing unmanned aerial vehicles to be used in cooperative scenarios. The use of rotorcrafts has many attractive advantages, since these vehicles have the capability to take-off and land vertically, to hover and to move backward and laterally. Rotary-wing aircraft missions require precise control characteristics due to their unstable and heavy coupling aspects. As a matter of fact, flight test is the most accurate way to evaluate flying qualities and to test control systems. However, it may be very expensive and/or not feasible in case of early stage design and prototyping. A good compromise is made by a preliminary assessment performed by means of simulations and a reduced flight testing campaign. Consequently, having an analytical framework represents an important stage for simulations and control algorithm design. In this work mathematical models for various helicopter configurations are implemented. Different flight control techniques for helicopters are presented with theoretical background and tested via simulations and experimental flight tests on a small-scale unmanned helicopter. The same platform is used also in a cooperative scenario with a rover. Control strategies, algorithms and their implementation to perform missions are presented for two main scenarios. One of the main contributions of this thesis is to propose a suitable control system made by a classical PID baseline controller augmented with L1 adaptive contribution. In addition a complete analytical framework and the study of the dynamics and the stability of a synch-rotor are provided. At last, the implementation of cooperative control strategies for two main scenarios that include a small-scale unmanned helicopter and a rover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dopo gli indubbi sviluppi politici e legali tendenti all’uniformazione è inevitabile non sostenere che anche il mercato della gestione delle infrastrutture e del trasporto aereo a terra costituisce un fattore determinante del trasporto aereo con una più stretta necessità di uniformazione del quadro regolamentare. La gestione aeroportuale e i servizi connessi è collocata all’interno del diritto aereo. Perché si configuri il “trasporto aereo” (nozione dinamica base che caratterizza il diritto del trasporto aereo) si ha la necessità di un accordo tra due paesi – un permesso di volo designato – una finestra di orario di decollo e atterraggio e la regolamentazione delle relative attività connesse, affinché si svolgano in situazione di safety, quale conditio sine qua non di tutte le attività di aviazione. Tuttavia, la migliore dottrina sente il bisogno di una trattazione separata della materia diritto aereo in senso stretto e quella della disciplina aeroportuale, benché i due ambiti sono tra di loro contigui. Questo è legittimato da esigenze contrapposte fra gli operatori dei due settori. In ultima considerazione possiamo sostenere che gli sviluppi legislativi, sia nel diritto aeronautico e in quello marittimo, portano all’abbraccio della impostazione di un diritto dei trasporti inclusivo di ogni forma dell’attuazione del fenomeno trasporto, scollegandosi al solo fenomeno dell’esercizio nautico quale elemento caratterizzante della disciplina. Quale futuro legislativo si prospetta per la gestione del bene aeroporto? Quale sarà la sua dimensione legale su questioni importanti sulle quali esiste una normazione europea come l’allocazione delle bande orarie, tasse aeroportuali e assistenza a terra oppure su quelle che hanno un carattere prevalentemente nazionale? E infine, quale sarebbe la strada da seguire per regolare il nuovo mercato aeroportuale che è passato dalla idea della competizione per il mercato esplorando anche la competizione nel mercato, con aeroporti che si comportano come operatori in concorrenza tra loro?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The topic of this thesis fo cus on the preliminary design and the p erformance analysis of a multirotor platform. A multirotor is an electrically p owered Vertical Take Off (VTOL) machine with more than two rotors that lift and control the platform. Multirotor are agile, compact and robust, making them ideally suited for b oth indo or and outdo or application especially to carry-on several sensors like electro optical multisp ectral sensor or gas sensor. The main disadvantage is the limited endurance due to heavy Li-Po batteries and high disk loading through the use of different small prop ellers. At the same time, the design of the multirotor do es not follow any engineering principle but it follow the ideas of amateurs’ builder. An adaptation of the classic airplane design theory for the preliminary design is implemented to fill the gap and detailed study of the endurance is p erformed to define the right way to make this kind of VTOL platforms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibre Reinforced Concretes are innovative composite materials whose applications are growing considerably nowadays. Being composite materials, their performance depends on the mechanical properties of both components, fibre and matrix and, above all, on the interface. The variables to account for the mechanical characterization of the material, could be proper of the material itself, i.e. fibre and concrete type, or external factors, i.e. environmental conditions. The first part of the research presented is focused on the experimental and numerical characterization of the interface properties and short term response of fibre reinforced concretes with macro-synthetic fibers. The experimental database produced represents the starting point for numerical models calibration and validation with two principal purposes: the calibration of a local constitutive law and calibration and validation of a model predictive of the whole material response. In the perspective of the design of sustainable admixtures, the optimization of the matrix of cement-based fibre reinforced composites is realized with partial substitution of the cement amount. In the second part of the research, the effect of time dependent phenomena on MSFRCs response is studied. An extended experimental campaign of creep tests is performed analysing the effect of time and temperature variations in different loading conditions. On the results achieved, a numerical model able to account for the viscoelastic nature of both concrete and reinforcement, together with the environmental conditions, is calibrated with the LDPM theory. Different type of regression models are also elaborated correlating the mechanical properties investigated, bond strength and residual flexural behaviour, regarding the short term analysis and creep coefficient on time, for the time dependent behaviour, with the variable investigated. The experimental studies carried out emphasize the several aspects influencing the material mechanical performance allowing also the identification of those properties that the numerical approach should consider in order to be reliable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In martial arts there are several ways to perform the turning kick . Following the martial arts or different learning models many types of kicks take shape. Mawashi geri is the karate turning kick. At the moment there are two models of mawashi geri, one comes from the traditional karate (OLD), and the other newer (NEW), who agrees to the change of the rules of W.K.F. (World Karate Federation) happened in 2000 (Macan J. et all 2006) . In this study we are focus on the differences about two models the mawashi geri jodan of karate. The purpose of this study is to analyse cinematic and kinetic parameters of mawashi geri jodan. Timing of the striking and supporting leg actions were also evaluated A Vicon system 460 IR with 6 cameras at sample frequency of 200 Hz was used. 37 reflective markers have been set on the skin of the subjects following the “PlugInGait-total body model”. The participants performed five repetitions of mawashi geri jodan at maximum rapidity with their dominant leg against a ball suspended in front of them placed at ear height. Fourteen skilled subjects (mean level black belt 1,7 dan; age 20,9±4,8 yrs; height 171,4±7,3 cm; weight 60,9±10,2 Kg) practicing karate have been split in two group through the hierarchical cluster analysis following their technical characteristics. By means of the Mann Whitney-U test (Spss-package) the differences between the two groups were verified in preparatory and execution phase. Kicking knee at start, kicking hip and knee at take-off were different between the two groups (p < 0,05). Striking hip flexion during the spin of the supporting foot was different between the two groups (p < 0,05). Peak angular velocity of hip flexion were different between the two groups (p < 0,05). Groups showed differences also in timing of the supporting spin movement. While Old group spin the supporting foot at 30% of the trial, instead New start spinning at 44% of the trial. Old group showed a greater supporting foot spin than New (Old 110° Vs New 82°). Abduction values didn’t show any differences between the two groups. At the hit has been evaluated a 120° of double hips abduction, for the entire sample. Striking knee extension happened for everybody after the kicking hip flexion and confirm the proximal-distal action of the striking leg (Sorensen H. 1996). In contrast with Pearson J.N. 1997 and Landeo R 2007, peak velocity of the striking foot is not useful to describe kick performance because affected by the stature. Two groups are different either in preparatory phase or in execution phase. The body is set in difference manner already before the take-off of the kicking foot. The groups differ for the timing of the supporting foot action Trainer should pay attention to starting posture and on abduction capacities of the athletes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Il tema delle infrastrutture, intese come parte dell’architettura dello spazio urbano e del territorio, assume un ruolo centrale in molti progetti contemporanei e costituisce la ragione di questa ricerca. E’ preso in esame, in particolare, il tracciato extraurbano della via Emilia, antica strada consolare romana la cui definizione risale al II sec. a.C., nel tratto compreso tra le città di Rimini e Forlì. Studiare la strada nel suo rapporto con il territorio locale ha significato in primo luogo prendere in considerazione la via Emilia in quanto manufatto, ma anche in quanto percorso che si compie nel tempo. Si è dunque cercato di mostrare come, in parallelo all’evoluzione della sua sezione e della geometria del suo tracciato, sia cambiata anche la sua fruizione, e come si sia evoluto il modo in cui la strada viene “misurata”, denominata e gestita. All’interno di una riflessione critica sulla forma e sul ruolo della strada nel corso dei secoli la Tesi rilegge il territorio nella sua dimensione di “palinsesto”, riconoscendo e isolando alcuni momenti in cui la via Emilia ha assunto un valore “simbolico” che rimanda alla Roma imperiale. La perdita del significato via Emilia, intesa come elemento di “costruzione” del territorio, ha origine con il processo di urbanizzazione diffusa che ha investito il territorio extraurbano a partire dalla fine della seconda guerra mondiale. La condizione attuale della strada, sempre più congestionata dal traffico veicolare, costituisce la premesse per una riflessione sul futuro della sua forma e degli insediamenti che attraversa. La strategia proposta dagli Enti locali che prevede il raddoppio della strada, con la costruzione della via Emilia Bis, non garantisce solo un potenziamento infrastrutturale ma rappresenta l’occasione per sottrarre al tracciato attuale la funzione di principale asse di comunicazione extraurbana. La via Emilia potrebbe così recuperare il ruolo di itinerario narrativo, attraverso la configurazione dei suoi spazi collettivi, l’architettura dei suoi edifici, il significato dei suoi monumenti, e diventare spazio privilegiato di relazione e di aggregazione. The theme of urban infrastructures, thought as part of the design of urban space and territory, has a central role in several contemporary projects and is the reason of this research. The object of the study is the extra urban route of the via Emilia, an ancient roman road which has been defined in the II century b. C., in its stretch between the cities of Rimini and Forlì. Studying the road in its relationship with the local environment has meant first of all considering the via Emilia as an “artefact” but also as a path that takes place over time. The aim of this research was also to demonstrate how its fruition has changed together with the evolution of the section and geometry of the route, and how the road itself is measured, named and managed. Within a critical approach on the shape and on the role played by the road through the centuries, this Essay reinterprets the territory in its dimension of “palimpsest”, identifying and isolating some periods of time when the via Emilia assumed a symbolic value which recalls the Imperial Rome. The loss of the meaning of the via Emilia, intended as an element that “constitutes” the territory originates from a process of diffused urbanization, which spread in the extra urban environment from the end of the second world war. The actual condition of the road, more and more congested by traffic, is the premise of a reflection about the future of its shape and of the settlements alongside. The strategy proposed by the local authorities, that foresees to double the size of the road, building the via Emilia Bis, not only guarantees an infrastructural enhancement but also it represents an opportunity to take off from the road itself the current function of being the principal axis of extra urban connection. In this way the via Emilia could regain its role as a narrative itinerary, through the configuration of its public spaces, the architecture of its buildings, the meaning of its monuments, and then become a privileged space of relationship and aggregation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Food technologies today mean reducing agricultural food waste, improvement of food security, enhancement of food sensory properties, enlargement of food market and food economies. Food technologists must be high-skilled technicians with good scientific knowledge of food hygiene, food chemistry, industrial technologies and food engineering, sensory evaluation experience and analytical chemistry. Their role is to apply the modern vision of science in the field of human nutrition, rising up knowledge in food science. The present PhD project starts with the aim of studying and improving frozen fruits quality. Freezing process in very powerful in preserve initial raw material characteristics, but pre-treatment before the freezing process are necessary to improve quality, in particular to improve texture and enzymatic activity of frozen foods. Osmotic Dehydration (OD) and Vacuum Impregnation (VI), are useful techniques to modify fruits and vegetables composition and prepare them to freezing process. These techniques permit to introduce cryo-protective agent into the food matrices, without significant changes of the original structure, but cause a slight leaching of important intrinsic compounds. Phenolic and polyphenolic compounds for example in apples and nectarines treated with hypertonic solutions are slightly decreased, but the effect of concentration due to water removal driven out from the osmotic gradient, cause a final content of phenolic compounds similar to that of the raw material. In many experiment, a very important change in fruit composition regard the aroma profile. This occur in strawberries osmo-dehydrated under vacuum condition or under atmospheric pressure condition. The increment of some volatiles, probably due to fermentative metabolism induced by the osmotic stress of hypertonic treatment, induce a sensory profile modification of frozen fruits, that in some way result in a better acceptability of consumer, that prefer treated frozen fruits to untreated frozen fruits. Among different processes used, a very interesting result was obtained with the application of a osmotic pre-treatment driven out at refrigerated temperature for long time. The final quality of frozen strawberries was very high and a peculiar increment of phenolic profile was detected. This interesting phenomenon was probably due to induction of phenolic biological synthesis (for example as reaction to osmotic stress), or to hydrolysis of polymeric phenolic compounds. Aside this investigation in the cryo-stabilization and dehydrofreezing of fruits, deeper investigation in VI techniques were carried out, as studies of changes in vacuum impregnated prickly pear texture, and in use of VI and ultrasound (US) in aroma enrichment of fruit pieces. Moreover, to develop sensory evaluation tools and analytical chemistry determination (of volatiles and phenolic compounds), some researches were bring off and published in these fields. Specifically dealing with off-flavour development during storage of boiled potato, and capillary zonal electrophoresis (CZE) and high performance liquid chromatography (HPLC) determination of phenolic compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In ogni capitolo, l’atto del ricordare viene indagato nelle diverse valenze che lo mettono in rapporto diretto con la nostalgia e l’oblio. L’analisi dei testi letterari copre un arco di tempo di quasi un secolo, partendo dalle innovazioni tecnico-stilistiche realizzate da Katherine Mansfield fino all’eccezionale ricchezza e al meritato successo di pubblico e critica della scrittrice canadese Alice Munro. La bibliografia dei testi primari e secondari è strutturata con criteri tematici e cronologici.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research thesis was focused on the development of new biomaterials and devices for application in regenerative medicine, particularly in the repair/regeneration of bone and osteochondral regions affected by degenerative diseases such as Osteoarthritis and Osteoporosis or serious traumas. More specifically, the work was focused on the synthesis and physico-chemical-morphological characterization of: i) a new superparamagnetic apatite phase; ii) new biomimetic superparamagnetic bone and osteochondral scaffolds; iii) new bioactive bone cements for regenerative vertebroplasty. The new bio-devices were designed to exhibit high biomimicry with hard human tissues and with functionality promoting faster tissue repair and improved texturing. In particular, recent trends in tissue regeneration indicate magnetism as a new tool to stimulate cells towards tissue formation and organization; in this perspective a new superparamagnetic apatite was synthesized by doping apatite lattice with di-and trivalent iron ions during synthesis. This finding was the pin to synthesize newly conceived superparamagnetic bone and osteochondral scaffolds by reproducing in laboratory the biological processes yielding the formation of new bone, i.e. the self-assembly/organization of collagen fibrils and heterogeneous nucleation of nanosized, ionically substituted apatite mimicking the mineral part of bone. The new scaffolds can be magnetically switched on/off and function as workstations guiding fast tissue regeneration by minimally invasive and more efficient approaches. Moreover, in the view of specific treatments for patients affected by osteoporosis or traumas involving vertebrae weakening or fracture, the present work was also dedicated to the development of new self-setting injectable pastes based on strontium-substituted calcium phosphates, able to harden in vivo and transform into strontium-substituted hydroxyapatite. The addition of strontium may provide an anti-osteoporotic effect, aiding to restore the physiologic bone turnover. The ceramic-based paste was also added with bio-polymers, able to be progressively resorbed thus creating additional porosity in the cement body that favour cell colonization and osseointegration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical models are developed for the continuous-wave and pulsed laser incision and cut of thin single and multi-layer films. A one-dimensional steady-state model establishes the theoretical foundations of the problem by combining a power-balance integral with heat flow in the direction of laser motion. In this approach, classical modelling methods for laser processing are extended by introducing multi-layer optical absorption and thermal properties. The calculation domain is consequently divided in correspondence with the progressive removal of individual layers. A second, time-domain numerical model for the short-pulse laser ablation of metals accounts for changes in optical and thermal properties during a single laser pulse. With sufficient fluence, the target surface is heated towards its critical temperature and homogeneous boiling or "phase explosion" takes place. Improvements are seen over previous works with the more accurate calculation of optical absorption and shielding of the incident beam by the ablation products. A third, general time-domain numerical laser processing model combines ablation depth and energy absorption data from the short-pulse model with two-dimensional heat flow in an arbitrary multi-layer structure. Layer removal is the result of both progressive short-pulse ablation and classical vaporisation due to long-term heating of the sample. At low velocity, pulsed laser exposure of multi-layer films comprising aluminium-plastic and aluminium-paper are found to be characterised by short-pulse ablation of the metallic layer and vaporisation or degradation of the others due to thermal conduction from the former. At high velocity, all layers of the two films are ultimately removed by vaporisation or degradation as the average beam power is increased to achieve a complete cut. The transition velocity between the two characteristic removal types is shown to be a function of the pulse repetition rate. An experimental investigation validates the simulation results and provides new laser processing data for some typical packaging materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, a strategy to model the behavior of fluids and their interaction with deformable bodies is proposed. The fluid domain is modeled by using the lattice Boltzmann method, thus analyzing the fluid dynamics by a mesoscopic point of view. It has been proved that the solution provided by this method is equivalent to solve the Navier-Stokes equations for an incompressible flow with a second-order accuracy. Slender elastic structures idealized through beam finite elements are used. Large displacements are accounted for by using the corotational formulation. Structural dynamics is computed by using the Time Discontinuous Galerkin method. Therefore, two different solution procedures are used, one for the fluid domain and the other for the structural part, respectively. These two solvers need to communicate and to transfer each other several information, i.e. stresses, velocities, displacements. In order to guarantee a continuous, effective, and mutual exchange of information, a coupling strategy, consisting of three different algorithms, has been developed and numerically tested. In particular, the effectiveness of the three algorithms is shown in terms of interface energy artificially produced by the approximate fulfilling of compatibility and equilibrium conditions at the fluid-structure interface. The proposed coupled approach is used in order to solve different fluid-structure interaction problems, i.e. cantilever beams immersed in a viscous fluid, the impact of the hull of the ship on the marine free-surface, blood flow in a deformable vessels, and even flapping wings simulating the take-off of a butterfly. The good results achieved in each application highlight the effectiveness of the proposed methodology and of the C++ developed software to successfully approach several two-dimensional fluid-structure interaction problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network monitoring is of paramount importance for effective network management: it allows to constantly observe the network’s behavior to ensure it is working as intended and can trigger both automated and manual remediation procedures in case of failures and anomalies. The concept of SDN decouples the control logic from legacy network infrastructure to perform centralized control on multiple switches in the network, and in this context, the responsibility of switches is only to forward packets according to the flow control instructions provided by controller. However, as current SDN switches only expose simple per-port and per-flow counters, the controller has to do almost all the processing to determine the network state, which causes significant communication overhead and excessive latency for monitoring purposes. The absence of programmability in the data plane of SDN prompted the advent of programmable switches, which allow developers to customize the data-plane pipeline and implement novel programs operating directly in the switches. This means that we can offload certain monitoring tasks to programmable data planes, to perform fine-grained monitoring even at very high packet processing speeds. Given the central importance of network monitoring exploiting programmable data planes, the goal of this thesis is to enable a wide range of monitoring tasks in programmable switches, with a specific focus on the ones equipped with programmable ASICs. Indeed, most network monitoring solutions available in literature do not take computational and memory constraints of programmable switches into due account, preventing, de facto, their successful implementation in commodity switches. This claims that network monitoring tasks can be executed in programmable switches. Our evaluations show that the contributions in this thesis could be used by network administrators as well as network security engineers, to better understand the network status depending on different monitoring metrics, and thus prevent network infrastructure and service outages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biology is now a “Big Data Science” thanks to technological advancements allowing the characterization of the whole macromolecular content of a cell or a collection of cells. This opens interesting perspectives, but only a small portion of this data may be experimentally characterized. From this derives the demand of accurate and efficient computational tools for automatic annotation of biological molecules. This is even more true when dealing with membrane proteins, on which my research project is focused leading to the development of two machine learning-based methods: BetAware-Deep and SVMyr. BetAware-Deep is a tool for the detection and topology prediction of transmembrane beta-barrel proteins found in Gram-negative bacteria. These proteins are involved in many biological processes and primary candidates as drug targets. BetAware-Deep exploits the combination of a deep learning framework (bidirectional long short-term memory) and a probabilistic graphical model (grammatical-restrained hidden conditional random field). Moreover, it introduced a modified formulation of the hydrophobic moment, designed to include the evolutionary information. BetAware-Deep outperformed all the available methods in topology prediction and reported high scores in the detection task. Glycine myristoylation in Eukaryotes is the binding of a myristic acid on an N-terminal glycine. SVMyr is a fast method based on support vector machines designed to predict this modification in dataset of proteomic scale. It uses as input octapeptides and exploits computational scores derived from experimental examples and mean physicochemical features. SVMyr outperformed all the available methods for co-translational myristoylation prediction. In addition, it allows (as a unique feature) the prediction of post-translational myristoylation. Both the tools here described are designed having in mind best practices for the development of machine learning-based tools outlined by the bioinformatics community. Moreover, they are made available via user-friendly web servers. All this make them valuable tools for filling the gap between sequential and annotated data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After initial efforts in the late 1980s, the interest in thermochemiluminescence (TCL) as an effective detection technique has gradually faded due to some drawbacks, such as the high temperatures required to trigger the light emission and the relatively low intensities, which determined a poor sensitivity. Recent advances made with the adoption of variably functionalized 1,2-dioxetanes as innovative luminophores, have proved to be a promising approach for the development of reagentless and ultrasensitive detection methods exploitable in biosensors by using TCL compounds as labels, as either single molecules or included in modified nanoparticles. In this PhD Thesis, a novel class of N-substituted acridine-containing 1,2-dioxetanes was designed, synthesized, and characterized as universal TCL probes endowed with optimal emission-triggering temperatures and higher detectability particularly useful in bioanalytical assays. The different decorations introduced by the insertion of both electron donating (EDGs) and electron withdrawing groups (EWGs) at the 2- and 7-positions of acridine fluorophore was found to profoundly affect the photophysical properties and the activation parameters of the final 1,2-dioxetane products. Challenges in the synthesis of 1,2-dioxetanes were tackled with the recourse to continuous flow photochemistry to achieve the target parent compound in high yields, short reaction time, and easy scalability. Computational studies were also carried out to predict the olefins reactivity in the crucial photooxygenation reaction as well as the final products stability. The preliminary application of TCL prototype molecule has been performed in HaCaT cell lines showing the ability of these molecules to be detected in real biological samples and cell-based assays. Finally, attempts on the characterization of 1,2-dioxetanes in different environments (solid state, optical glue and nanosystems) and the development of bioconjugated TCL probes will be also presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing demand for lightweight solutions in every field of engineering is driving the industry to seek new technological solutions to exploit the full potential of different materials. The combination of dissimilar materials with distinct property ranges embodies a transparent allocation of component functions while allowing an optimal mix of their characteristics. From both technological and design perspectives, the interaction between dissimilar materials can lead to severe defects that compromise a multi-material hybrid component's performance and its structural integrity. This thesis aims to develop methodologies for designing, manufacturing, and monitoring of hybrid metal-composite joints and hybrid composite components. In Chapter 1, a methodology for designing and manufacturing hybrid aluminum/composite co-cured tubes is assessed. In Chapter 2, a full-field methodology for fiber misalignment detection and stiffness prediction for hybrid, long fiber reinforced composite systems is shown and demonstrated. Chapter 3 reports the development of a novel technology for joining short fiber systems and metals in a one-step co-curing process using lattice structures. Chapter 4 is dedicated to a novel analytical framework for the design optimization of two lattice architectures.