4 resultados para Shear walls

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Per quanto riguarda le costruzioni in conglomerato cementizio armato gettato in opera, i sistemi strutturali più comunemente utilizzati sono quelli a telaio (con trasmissione di momento flettente), a setti portanti o una combinazione di entrambi. A partire dagli anni ’60, numerosissimi sono stati gli studi relativamente al comportamento sismico di strutture in c.a. a telaio. Lo stesso si può affermare per le costruzioni costituite da pareti miste a telai. In particolare, l’argomento della progettazione sismica di tali tipologie di edifici ha sempre riguardato soprattutto gli edifici alti nei quali, evidentemente, l’impiego delle pareti avveniva allo scopo di limitarne la elevata deformabilità. Il comportamento sismico di strutture realizzate interamente a pareti portanti in c.a. è stato meno studiato negli anni, nonostante si sia osservato che edifici realizzati mediante tali sistemi strutturali abbiano mostrato, in generale, pregevoli risorse di resistenza nei confronti di terremoti anche di elevata intensità. Negli ultimi 10 anni, l’ingegneria sismica si sta incentrando sull’approfondimento delle risorse di tipologie costruttive di cui si è sempre fatto largo uso in passato (tipicamente nei paesi dell’Europa continentale, in America latina, negli USA e anche in Italia), ma delle quali mancavano adeguate conoscenze scientifiche relativamente al loro comportamento in zona sismica. Tali tipologie riguardano sostanzialmente sistemi strutturali interamente costituiti da pareti portanti in c.a. per edifici di modesta altezza, usualmente utilizzati in un’edilizia caratterizzata da ridotti costi di realizzazione (fabbricati per abitazioni civili e/o uffici). Obiettivo “generale” del lavoro di ricerca qui presentato è lo studio del comportamento sismico di strutture realizzate interamente a setti portanti in c.a. e di modesta altezza (edilizia caratterizzata da ridotti costi di realizzazione). In particolare, le pareti che si intendono qui studiare sono caratterizzate da basse percentuali geometriche di armatura e sono realizzate secondo la tecnologia del cassero a perdere. A conoscenza dello scrivente, non sono mai stati realizzati, fino ad oggi, studi sperimentali ed analitici allo scopo di determinare il comportamento sismico di tali sistemi strutturali, mentre è ben noto il loro comportamento statico. In dettaglio, questo lavoro di ricerca ha il duplice scopo di: • ottenere un sistema strutturale caratterizzato da elevate prestazioni sismiche; • mettere a punto strumenti applicativi (congruenti e compatibili con le vigenti normative e dunque immediatamente utilizzabili dai progettisti) per la progettazione sismica dei pannelli portanti in c.a. oggetto del presente studio. Al fine di studiare il comportamento sismico e di individuare gli strumenti pratici per la progettazione, la ricerca è stata organizzata come segue: • identificazione delle caratteristiche delle strutture studiate, mediante lo sviluppo/specializzazione di opportune formulazioni analitiche; • progettazione, supervisione, ed interpretazione di una estesa campagna di prove sperimentali eseguita su pareti portanti in c.a. in vera grandezza, al fine di verificarne l’efficace comportamento sotto carico ciclico; • sviluppo di semplici indicazioni (regole) progettuali relativamente alle strutture a pareti in c.a. studiate, al fine di ottenere le caratteristiche prestazionali desiderate. I risultati delle prove sperimentali hanno mostrato di essere in accordo con le previsioni analitiche, a conferma della validità degli strumenti di predizione del comportamento di tali pannelli. Le elevatissime prestazioni riscontrate sia in termini di resistenza che in termini di duttilità hanno evidenziato come le strutture studiate, così messe a punto, abbiano manifestato un comportamento sismico più che soddisfacente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to develop a model capable to capture the different contributions which characterize the nonlinear behaviour of reinforced concrete structures. In particular, especially for non slender structures, the contribution to the nonlinear deformation due to bending may be not sufficient to determine the structural response. Two different models characterized by a fibre beam-column element are here proposed. These models can reproduce the flexure-shear interaction in the nonlinear range, with the purpose to improve the analysis in shear-critical structures. The first element discussed is based on flexibility formulation which is associated with the Modified Compression Field Theory as material constitutive law. The other model described in this thesis is based on a three-field variational formulation which is associated with a 3D generalized plastic-damage model as constitutive relationship. The first model proposed in this thesis was developed trying to combine a fibre beamcolumn element based on the flexibility formulation with the MCFT theory as constitutive relationship. The flexibility formulation, in fact, seems to be particularly effective for analysis in the nonlinear field. Just the coupling between the fibre element to model the structure and the shear panel to model the individual fibres allows to describe the nonlinear response associated to flexure and shear, and especially their interaction in the nonlinear field. The model was implemented in an original matlab® computer code, for describing the response of generic structures. The simulations carried out allowed to verify the field of working of the model. Comparisons with available experimental results related to reinforced concrete shears wall were performed in order to validate the model. These results are characterized by the peculiarity of distinguishing the different contributions due to flexure and shear separately. The presented simulations were carried out, in particular, for monotonic loading. The model was tested also through numerical comparisons with other computer programs. Finally it was applied for performing a numerical study on the influence of the nonlinear shear response for non slender reinforced concrete (RC) members. Another approach to the problem has been studied during a period of research at the University of California Berkeley. The beam formulation follows the assumptions of the Timoshenko shear beam theory for the displacement field, and uses a three-field variational formulation in the derivation of the element response. A generalized plasticity model is implemented for structural steel and a 3D plastic-damage model is used for the simulation of concrete. The transverse normal stress is used to satisfy the transverse equilibrium equations of at each control section, this criterion is also used for the condensation of degrees of freedom from the 3D constitutive material to a beam element. In this thesis is presented the beam formulation and the constitutive relationships, different analysis and comparisons are still carrying out between the two model presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sheet pile walls are one of the oldest earth retention systems utilized in civil engineering projects. They are used for various purposes; such as excavation support system, cofferdams, cut-off walls under dams, slope stabilization, waterfront structures, and flood walls. Sheet pile walls are one of the most common types of quay walls used in port construction. The worldwide increases in utilization of large ships for transportation have created an urgent need of deepening the seabed within port areas and consequently the rehabilitation of its wharfs. Several methods can be used to increase the load-carrying capacity of sheet-piling walls. The use of additional anchored tie rods grouted into the backfill soil and arranged along the exposed wall height is one of the most practical and appropriate solutions adopted for stabilization and rehabilitation of the existing quay wall. The Ravenna Port Authority initiated a project to deepen the harbor bottom at selected wharves. An extensive parametric study through the finite element program, PLAXIS 2D, version 2012 was carried out to investigate the enhancement of using submerged grouted anchors technique on the load response of sheet-piling quay wall. The influence of grout-ties area, length of grouted body, anchor inclination and anchor location were considered and evaluated due to the effect of different system parameters. Also a comparative study was conducted by Plaxis 2D and 3D program to investigate the behavior of these sheet pile quay walls in terms of horizontal displacements induced along the sheet pile wall and ground surface settlements as well as the anchor force and calculated factor of safety. Finally, a comprehensive study was carried out by using different constitutive models to simulate the mechanical behavior of the soil to investigate the effect of these two models (Mohr-Coulomb and Hardening Soil) on the behavior of these sheet pile quay walls.