11 resultados para Shape finding

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is not unknown that the evolution of firm theories has been developed along a path paved by an increasing awareness of the organizational structure importance. From the early “neoclassical” conceptualizations that intended the firm as a rational actor whose aim is to produce that amount of output, given the inputs at its disposal and in accordance to technological or environmental constraints, which maximizes the revenue (see Boulding, 1942 for a past mid century state of the art discussion) to the knowledge based theory of the firm (Nonaka & Takeuchi, 1995; Nonaka & Toyama, 2005), which recognizes in the firm a knnowledge creating entity, with specific organizational capabilities (Teece, 1996; Teece & Pisano, 1998) that allow to sustaine competitive advantages. Tracing back a map of the theory of the firm evolution, taking into account the several perspectives adopted in the history of thought, would take the length of many books. Because of that a more fruitful strategy is circumscribing the focus of the description of the literature evolution to one flow connected to a crucial question about the nature of firm’s behaviour and about the determinants of competitive advantages. In so doing I adopt a perspective that allows me to consider the organizational structure of the firm as an element according to which the different theories can be discriminated. The approach adopted starts by considering the drawbacks of the standard neoclassical theory of the firm. Discussing the most influential theoretical approaches I end up with a close examination of the knowledge based perspective of the firm. Within this perspective the firm is considered as a knowledge creating entity that produce and mange knowledge (Nonaka, Toyama, & Nagata, 2000; Nonaka & Toyama, 2005). In a knowledge intensive organization, knowledge is clearly embedded for the most part in the human capital of the individuals that compose such an organization. In a knowledge based organization, the management, in order to cope with knowledge intensive productions, ought to develop and accumulate capabilities that shape the organizational forms in a way that relies on “cross-functional processes, extensive delayering and empowerment” (Foss 2005, p.12). This mechanism contributes to determine the absorptive capacity of the firm towards specific technologies and, in so doing, it also shape the technological trajectories along which the firm moves. After having recognized the growing importance of the firm’s organizational structure in the theoretical literature concerning the firm theory, the subsequent point of the analysis is that of providing an overview of the changes that have been occurred at micro level to the firm’s organization of production. The economic actors have to deal with challenges posed by processes of internationalisation and globalization, increased and increasing competitive pressure of less developed countries on low value added production activities, changes in technologies and increased environmental turbulence and volatility. As a consequence, it has been widely recognized that the main organizational models of production that fitted well in the 20th century are now partially inadequate and processes aiming to reorganize production activities have been widespread across several economies in recent years. Recently, the emergence of a “new” form of production organization has been proposed both by scholars, practitioners and institutions: the most prominent characteristic of such a model is its recognition of the importance of employees commitment and involvement. As a consequence it is characterized by a strong accent on the human resource management and on those practices that aim to widen the autonomy and responsibility of the workers as well as increasing their commitment to the organization (Osterman, 1994; 2000; Lynch, 2007). This “model” of production organization is by many defined as High Performance Work System (HPWS). Despite the increasing diffusion of workplace practices that may be inscribed within the concept of HPWS in western countries’ companies, it is an hazard, to some extent, to speak about the emergence of a “new organizational paradigm”. The discussion about organizational changes and the diffusion of HPWP the focus cannot abstract from a discussion about the industrial relations systems, with a particular accent on the employment relationships, because of their relevance, in the same way as production organization, in determining two major outcomes of the firm: innovation and economic performances. The argument is treated starting from the issue of the Social Dialogue at macro level, both in an European perspective and Italian perspective. The model of interaction between the social parties has repercussions, at micro level, on the employment relationships, that is to say on the relations between union delegates and management or workers and management. Finding economic and social policies capable of sustaining growth and employment within a knowledge based scenario is likely to constitute the major challenge for the next generation of social pacts, which are the main social dialogue outcomes. As Acocella and Leoni (2007) put forward the social pacts may constitute an instrument to trade wage moderation for high intensity in ICT, organizational and human capital investments. Empirical evidence, especially focused on the micro level, about the positive relation between economic growth and new organizational designs coupled with ICT adoption and non adversarial industrial relations is growing. Partnership among social parties may become an instrument to enhance firm competitiveness. The outcome of the discussion is the integration of organizational changes and industrial relations elements within a unified framework: the HPWS. Such a choice may help in disentangling the potential existence of complementarities between these two aspects of the firm internal structure on economic and innovative performance. With the third chapter starts the more original part of the thesis. The data utilized in order to disentangle the relations between HPWS practices, innovation and economic performance refer to the manufacturing firms of the Reggio Emilia province with more than 50 employees. The data have been collected through face to face interviews both to management (199 respondents) and to union representatives (181 respondents). Coupled with the cross section datasets a further data source is constituted by longitudinal balance sheets (1994-2004). Collecting reliable data that in turn provide reliable results needs always a great effort to which are connected uncertain results. Data at micro level are often subjected to a trade off: the wider is the geographical context to which the population surveyed belong the lesser is the amount of information usually collected (low level of resolution); the narrower is the focus on specific geographical context, the higher is the amount of information usually collected (high level of resolution). For the Italian case the evidence about the diffusion of HPWP and their effects on firm performances is still scanty and usually limited to local level studies (Cristini, et al., 2003). The thesis is also devoted to the deepening of an argument of particular interest: the existence of complementarities between the HPWS practices. It has been widely shown by empirical evidence that when HPWP are adopted in bundles they are more likely to impact on firm’s performances than when adopted in isolation (Ichniowski, Prennushi, Shaw, 1997). Is it true also for the local production system of Reggio Emilia? The empirical analysis has the precise aim of providing evidence on the relations between the HPWS dimensions and the innovative and economic performances of the firm. As far as the first line of analysis is concerned it must to be stressed the fundamental role that innovation plays in the economy (Geroski & Machin, 1993; Stoneman & Kwoon 1994, 1996; OECD, 2005; EC, 2002). On this point the evidence goes from the traditional innovations, usually approximated by R&D investment expenditure or number of patents, to the introduction and adoption of ICT, in the recent years (Brynjolfsson & Hitt, 2000). If innovation is important then it is critical to analyse its determinants. In this work it is hypothesised that organizational changes and firm level industrial relations/employment relations aspects that can be put under the heading of HPWS, influence the propensity to innovate in product, process and quality of the firm. The general argument may goes as follow: changes in production management and work organization reconfigure the absorptive capacity of the firm towards specific technologies and, in so doing, they shape the technological trajectories along which the firm moves; cooperative industrial relations may lead to smother adoption of innovations, because not contrasted by unions. From the first empirical chapter emerges that the different types of innovations seem to respond in different ways to the HPWS variables. The underlying processes of product, process and quality innovations are likely to answer to different firm’s strategies and needs. Nevertheless, it is possible to extract some general results in terms of the most influencing HPWS factors on innovative performance. The main three aspects are training coverage, employees involvement and the diffusion of bonuses. These variables show persistent and significant relations with all the three innovation types. The same do the components having such variables at their inside. In sum the aspects of the HPWS influence the propensity to innovate of the firm. At the same time, emerges a quite neat (although not always strong) evidence of complementarities presence between HPWS practices. In terns of the complementarity issue it can be said that some specific complementarities exist. Training activities, when adopted and managed in bundles, are related to the propensity to innovate. Having a sound skill base may be an element that enhances the firm’s capacity to innovate. It may enhance both the capacity to absorbe exogenous innovation and the capacity to endogenously develop innovations. The presence and diffusion of bonuses and the employees involvement also spur innovative propensity. The former because of their incentive nature and the latter because direct workers participation may increase workers commitment to the organizationa and thus their willingness to support and suggest inovations. The other line of analysis provides results on the relation between HPWS and economic performances of the firm. There have been a bulk of international empirical studies on the relation between organizational changes and economic performance (Black & Lynch 2001; Zwick 2004; Janod & Saint-Martin 2004; Huselid 1995; Huselid & Becker 1996; Cappelli & Neumark 2001), while the works aiming to capture the relations between economic performance and unions or industrial relations aspects are quite scant (Addison & Belfield, 2001; Pencavel, 2003; Machin & Stewart, 1990; Addison, 2005). In the empirical analysis the integration of the two main areas of the HPWS represent a scarcely exploited approach in the panorama of both national and international empirical studies. As remarked by Addison “although most analysis of workers representation and employee involvement/high performance work practices have been conducted in isolation – while sometimes including the other as controls – research is beginning to consider their interactions” (Addison, 2005, p.407). The analysis conducted exploiting temporal lags between dependent and covariates, possibility given by the merger of cross section and panel data, provides evidence in favour of the existence of HPWS practices impact on firm’s economic performance, differently measured. Although it does not seem to emerge robust evidence on the existence of complementarities among HPWS aspects on performances there is evidence of a general positive influence of the single practices. The results are quite sensible to the time lags, inducing to hypothesize that time varying heterogeneity is an important factor in determining the impact of organizational changes on economic performance. The implications of the analysis can be of help both to management and local level policy makers. Although the results are not simply extendible to other local production systems it may be argued that for contexts similar to the Reggio Emilia province, characterized by the presence of small and medium enterprises organized in districts and by a deep rooted unionism, with strong supporting institutions, the results and the implications here obtained can also fit well. However, a hope for future researches on the subject treated in the present work is that of collecting good quality information over wider geographical areas, possibly at national level, and repeated in time. Only in this way it is possible to solve the Gordian knot about the linkages between innovation, performance, high performance work practices and industrial relations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation concerns active fibre-reinforced composites with embedded shape memory alloy wires. The structural application of active materials allows to develop adaptive structures which actively respond to changes in the environment, such as morphing structures, self-healing structures and power harvesting devices. In particular, shape memory alloy actuators integrated within a composite actively control the structural shape or stiffness, thus influencing the composite static and dynamic properties. Envisaged applications include, among others, the prevention of thermal buckling of the outer skin of air vehicles, shape changes in panels for improved aerodynamic characteristics and the deployment of large space structures. The study and design of active composites is a complex and multidisciplinary topic, requiring in-depth understanding of both the coupled behaviour of active materials and the interaction between the different composite constituents. Both fibre-reinforced composites and shape memory alloys are extremely active research topics, whose modelling and experimental characterisation still present a number of open problems. Thus, while this dissertation focuses on active composites, some of the research results presented here can be usefully applied to traditional fibre-reinforced composites or other shape memory alloy applications. The dissertation is composed of four chapters. In the first chapter, active fibre-reinforced composites are introduced by giving an overview of the most common choices available for the reinforcement, matrix and production process, together with a brief introduction and classification of active materials. The second chapter presents a number of original contributions regarding the modelling of fibre-reinforced composites. Different two-dimensional laminate theories are derived from a parent three-dimensional theory, introducing a procedure for the a posteriori reconstruction of transverse stresses along the laminate thickness. Accurate through the thickness stresses are crucial for the composite modelling as they are responsible for some common failure mechanisms. A new finite element based on the First-order Shear Deformation Theory and a hybrid stress approach is proposed for the numerical solution of the two-dimensional laminate problem. The element is simple and computationally efficient. The transverse stresses through the laminate thickness are reconstructed starting from a general finite element solution. A two stages procedure is devised, based on Recovery by Compatibility in Patches and three-dimensional equilibrium. Finally, the determination of the elastic parameters of laminated structures via numerical-experimental Bayesian techniques is investigated. Two different estimators are analysed and compared, leading to the definition of an alternative procedure to improve convergence of the estimation process. The third chapter focuses on shape memory alloys, describing their properties and applications. A number of constitutive models proposed in the literature, both one-dimensional and three-dimensional, are critically discussed and compared, underlining their potential and limitations, which are mainly related to the definition of the phase diagram and the choice of internal variables. Some new experimental results on shape memory alloy material characterisation are also presented. These experimental observations display some features of the shape memory alloy behaviour which are generally not included in the current models, thus some ideas are proposed for the development of a new constitutive model. The fourth chapter, finally, focuses on active composite plates with embedded shape memory alloy wires. A number of di®erent approaches can be used to predict the behaviour of such structures, each model presenting different advantages and drawbacks related to complexity and versatility. A simple model able to describe both shape and stiffness control configurations within the same context is proposed and implemented. The model is then validated considering the shape control configuration, which is the most sensitive to model parameters. The experimental work is divided in two parts. In the first part, an active composite is built by gluing prestrained shape memory alloy wires on a carbon fibre laminate strip. This structure is relatively simple to build, however it is useful in order to experimentally demonstrate the feasibility of the concept proposed in the first part of the chapter. In the second part, the making of a fibre-reinforced composite with embedded shape memory alloy wires is investigated, considering different possible choices of materials and manufacturing processes. Although a number of technological issues still need to be faced, the experimental results allow to demonstrate the mechanism of shape control via embedded shape memory alloy wires, while showing a good agreement with the proposed model predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of protein fold is a central problem in life science, leading in the last years to several attempts for improving our knowledge of the protein structures. In this thesis this challenging problem is tackled by means of molecular dynamics, chirality and NMR studies. In the last decades, many algorithms were designed for the protein secondary structure assignment, which reveals the local protein shape adopted by segments of amino acids. In this regard, the use of local chirality for the protein secondary structure assignment was demonstreted, trying to correlate as well the propensity of a given amino acid for a particular secondary structure. The protein fold can be studied also by Nuclear Magnetic Resonance (NMR) investigations, finding the average structure adopted from a protein. In this context, the effect of Residual Dipolar Couplings (RDCs) in the structure refinement was shown, revealing a strong improvement of structure resolution. A wide extent of this thesis is devoted to the study of avian prion protein. Prion protein is the main responsible of a vast class of neurodegenerative diseases, known as Bovine Spongiform Encephalopathy (BSE), present in mammals, but not in avian species and it is caused from the conversion of cellular prion protein to the pathogenic misfolded isoform, accumulating in the brain in form of amiloyd plaques. In particular, the N-terminal region, namely the initial part of the protein, is quite different between mammal and avian species but both of them contain multimeric sequences called Repeats, octameric in mammals and hexameric in avians. However, such repeat regions show differences in the contained amino acids, in particular only avian hexarepeats contain tyrosine residues. The chirality analysis of avian prion protein configurations obtained from molecular dynamics reveals a high stiffness of the avian protein, which tends to preserve its regular secondary structure. This is due to the presence of prolines, histidines and especially tyrosines, which form a hydrogen bond network in the hexarepeat region, only possible in the avian protein, and thus probably hampering the aggregation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prehension in an act of coordinated reaching and grasping. The reaching component is concerned with bringing the hand to object to be grasped (transport phase); the grasping component refers to the shaping of the hand according to the object features (grasping phase) (Jeannerod, 1981). Reaching and grasping involve different muscles, proximal and distal muscles respectively, and are controlled by different parietofrontal circuit (Jeannerod et al., 1995): a medial circuit, involving area of superior parietal lobule and dorsal premotor area 6 (PMd) (dorsomedial visual stream), is mainly concerned with reaching; a lateral circuit, involving the inferior parietal lobule and ventral premotor area 6 (PMv) (dorsolateral visual stream), with grasping. Area V6A is located in the caudalmost part of the superior parietal lobule, so it belongs to the dorsomedial visual stream; it contains neurons sensitive to visual stimuli (Galletti et al. 1993, 1996, 1999) as well as cells sensitive to the direction of gaze (Galletti et al. 1995) and cells showing saccade-related activity (Nakamura et al. 1999; Kutz et al. 2003). Area V6A contains also arm-reaching neurons likely involved in the control of the direction of the arm during movements towards objects in the peripersonal space (Galletti et al. 1997; Fattori et al. 2001). The present results confirm this finding and demonstrate that during the reach-to-grasp the V6A neurons are also modulated by the orientation of the wrist. Experiments were approved by the Bioethical Committee of the University of Bologna and were performed in accordance with National laws on care and use of laboratory animals and with the European Communities Council Directive of 24th November 1986 (86/609/EEC), recently revised by the Council of Europe guidelines (Appendix A of Convention ETS 123). Experiments were performed in two awake Macaca fascicularis. Each monkey was trained to sit in a primate chair with the head restrained to perform reaching and grasping arm movements in complete darkness while gazing a small fixation point. The object to be grasped was a handle that could have different orientation. We recorded neural activity from 163 neurons of the anterior parietal sulcus; 116/163 (71%) neurons were modulated by the reach-to-grasp task during the execution of the forward movements toward the target (epoch MOV), 111/163 (68%) during the pulling of the handle (epoch HOLD) and 102/163 during the execution of backward movements (epoch M2) (t_test, p ≤ 0.05). About the 45% of the tested cells turned out to be sensitive to the orientation of the handle (one way ANOVA, p ≤ 0.05). To study how the distal components of the movement, such as the hand preshaping during the reaching of the handle, could influence the neuronal discharge, we compared the neuronal activity during the reaching movements towards the same spatial location in reach-to-point and reach-to-grasp tasks. Both tasks required proximal arm movements; only the reach-to-grasp task required distal movements to orient the wrist and to shape the hand to grasp the handle. The 56% of V6A cells showed significant differences in the neural discharge (one way ANOVA, p ≤ 0.05) between the reach-to-point and the reach-to-grasp tasks during MOV, 54% during HOLD and 52% during M2. These data show that reaching and grasping are processed by the same population of neurons, providing evidence that the coordination of reaching and grasping takes place much earlier than previously thought, i.e., in the parieto-occipital cortex. The data here reported are in agreement with results of lesions to the medial posterior parietal cortex in both monkeys and humans, and with recent imaging data in humans, all of them indicating a functional coupling in the control of reaching and grasping by the medial parietofrontal circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this PhD thesis is to investigate the orientational and dynamical properties of liquid crystalline systems, at molecular level and using atomistic computer simulations, to reach a better understanding of material behavior from a microscopic point view. In perspective this should allow to clarify the relation between the micro and macroscopic properties with the objective of predicting or confirming experimental results on these systems. In this context, we developed four different lines of work in the thesis. The first one concerns the orientational order and alignment mechanism of rigid solutes of small dimensions dissolved in a nematic phase formed by the 4-pentyl,4 cyanobiphenyl (5CB) nematic liquid crystal. The orientational distribution of solutes have been obtained with Molecular Dynamics Simulation (MD) and have been compared with experimental data reported in literature. we have also verified the agreement between order parameters and dipolar coupling values measured in NMR experiments. The MD determined effective orientational potentials have been compared with the predictions of Maier­Saupe and Surface tensor models. The second line concerns the development of a correct parametrization able to reproduce the phase transition properties of a prototype of the oligothiophene semiconductor family: sexithiophene (T6). T6 forms two crystalline polymorphs largely studied, and possesses liquid crystalline phases still not well characterized, From simulations we detected a phase transition from crystal to liquid crystal at about 580 K, in agreement with available experiments, and in particular we found two LC phases, smectic and nematic. The crystal­smectic transition is associated to a relevant density variation and to strong conformational changes of T6, namely the molecules in the liquid crystal phase easily assume a bent shape, deviating from the planar structure typical of the crystal. The third line explores a new approach for calculating the viscosity in a nematic through a virtual exper- iment resembling the classical falling sphere experiment. The falling sphere is replaced by an hydrogenated silicon nanoparticle of spherical shape suspended in 5CB, and gravity effects are replaced by a constant force applied to the nanoparticle in a selected direction. Once the nanoparticle reaches a constant velocity, the viscosity of the medium can be evaluated using Stokes' law. With this method we successfully reproduced experimental viscosities and viscosity anisotropy for the solvent 5CB. The last line deals with the study of order induction on nematic molecules by an hydrogenated silicon surface. Gaining predicting power for the anchoring behavior of liquid crystals at surfaces will be a very desirable capability, as many properties related to devices depend on molecular organization close to surfaces. Here we studied, by means of atomistic MD simulations, the flat interface between an hydrogenated (001) silicon surface in contact with a sample of 5CB molecules. We found a planar anchoring of the first layers of 5CB where surface interactions are dominating with respect to the mesogen intermolecular interactions. We also analyzed the interface 5CB­vacuum, finding a homeotropic orientation of the nematic at this interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis was carried out in the context of a co-tutoring program between Centro Ceramico Bologna (Italy) and Instituto di Tecnologia Ceramica, Castellón de la Plana (Spain). The subject of the thesis is the synthesis of silver nanoparticles and at their likely decorative application in the productive process of porcelain ceramic tiles. Silver nanoparticles were chosen as a case study, because metal nanoparticles are thermally stable, and they have non-linear optical properties when nano-structured, and therefore they develop saturated colours. The nanoparticles were synthesized by chemical reduction in aqueous solution, a method chosen because of its reduced working steps and energy costs. Besides such a synthesis method uses non-expensive and non-toxic raw material. By adopting this synthesis technique, it was also possible to control the dimension and the final shape of the nanoparticles. Several syntheses were carried out during the research work, modifying the molecular weight of the reducing agent and/or the firing temperature, in order to evaluate the influence such parameters have on the Ag-nanoparticles formation. The syntheses were monitored with the use of UV-Vis spectroscopy and the average dimension as well as the morphology of the nanoparticles was analysed by SEM. From the spectroscopic data obtained from each synthesis, a kinetic study was completed, relating the progress of the reaction to the two variables (ie temperature and molecular weight of the reducing agent). The aim was finding equations that allow the establishing of a relationship between the operating conditions during the synthesis and the characteristics of the final product. The next step was finding the best method of synthesis for the decorative application. For such a purpose the amount of nanoparticles, their average particle size, the shape and the agglomeration are considered. An aqueous suspension containing the nanoparticles is then sprayed over the fired ceramic tiles and they are subsequently thermally treated in conditions similar to the industrial one. The colorimetric parameters of the obtained ceramic tiles were studied and the method proved successful, giving the ceramic tiles stable and intense colours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Persistent Topology is an innovative way of matching topology and geometry, and it proves to be an effective mathematical tool in shape analysis. In order to express its full potential for applications, it has to interface with the typical environment of Computer Science: It must be possible to deal with a finite sampling of the object of interest, and with combinatorial representations of it. Following that idea, the main result claims that it is possible to construct a relation between the persistent Betti numbers (PBNs; also called rank invariant) of a compact, Riemannian submanifold X of R^m and the ones of an approximation U of X itself, where U is generated by a ball covering centered in the points of the sampling. Moreover we can state a further result in which, this time, we relate X with a finite simplicial complex S generated, thanks to a particular construction, by the sampling points. To be more precise, strict inequalities hold only in "blind strips'', i.e narrow areas around the discontinuity sets of the PBNs of U (or S). Out of the blind strips, the values of the PBNs of the original object, of the ball covering of it, and of the simplicial complex coincide, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early-Type galaxies (ETGs) are embedded in hot (10^6-10^7 K), X-ray emitting gaseous haloes, produced mainly by stellar winds and heated by Type Ia supernovae explosions, by the thermalization of stellar motions and occasionally by the central super-massive black hole (SMBH). In particular, the thermalization of the stellar motions is due to the interaction between the stellar and the SNIa ejecta and the hot interstellar medium (ISM) already residing in the ETG. A number of different astrophysical phenomena determine the X-ray properties of the hot ISM, such as stellar population formation and evolution, galaxy structure and internal kinematics, Active Galactic Nuclei (AGN) presence, and environmental effects. With the aid of high-resolution hydrodynamical simulations performed on state-of-the-art galaxy models, in this Thesis we focus on the effects of galaxy shape, stellar kinematics and star formation on the evolution of the X-ray coronae of ETGs. Numerical simulations show that the relative importance of flattening and rotation are functions of the galaxy mass: at low galaxy masses, adding flattening and rotation induces a galactic wind, thus lowering the X-ray luminosity; at high galaxy masses the angular momentum conservation keeps the central regions of rotating galaxies at low density, whereas in non-rotating models a denser and brighter atmosphere is formed. The same dependence from the galaxy mass is present in the effects of star formation (SF): in light galaxies SF contributes to increase the spread in Lx, while at high galaxy masses the halo X-ray properties are marginally sensitive to SF effects. In every case, the star formation rate at the present epoch quite agrees with observations, and the massive, cold gaseous discs are partially or completely consumed by SF on a time-scale of few Gyr, excluding the presence of young stellar discs at the present epoch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape memory materials (SMMs) represent an important class of smart materials that have the ability to return from a deformed state to their original shape. Thanks to such a property, SMMs are utilized in a wide range of innovative applications. The increasing number of applications and the consequent involvement of industrial players in the field have motivated researchers to formulate constitutive models able to catch the complex behavior of these materials and to develop robust computational tools for design purposes. Such a research field is still under progress, especially in the prediction of shape memory polymer (SMP) behavior and of important effects characterizing shape memory alloy (SMA) applications. Moreover, the frequent use of shape memory and metallic materials in biomedical devices, particularly in cardiovascular stents, implanted in the human body and experiencing millions of in-vivo cycles by the blood pressure, clearly indicates the need for a deeper understanding of fatigue/fracture failure in microsize components. The development of reliable stent designs against fatigue is still an open subject in scientific literature. Motivated by the described framework, the thesis focuses on several research issues involving the advanced constitutive, numerical and fatigue modeling of elastoplastic and shape memory materials. Starting from the constitutive modeling, the thesis proposes to develop refined phenomenological models for reliable SMA and SMP behavior descriptions. Then, concerning the numerical modeling, the thesis proposes to implement the models into numerical software by developing implicit/explicit time-integration algorithms, to guarantee robust computational tools for practical purposes. The described modeling activities are completed by experimental investigations on SMA actuator springs and polyethylene polymers. Finally, regarding the fatigue modeling, the thesis proposes the introduction of a general computational approach for the fatigue-life assessment of a classical stent design, in order to exploit computer-based simulations to prevent failures and modify design, without testing numerous devices.