5 resultados para Service Science
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Service Oriented Computing is a new programming paradigm for addressing distributed system design issues. Services are autonomous computational entities which can be dynamically discovered and composed in order to form more complex systems able to achieve different kinds of task. E-government, e-business and e-science are some examples of the IT areas where Service Oriented Computing will be exploited in the next years. At present, the most credited Service Oriented Computing technology is that of Web Services, whose specifications are enriched day by day by industrial consortia without following a precise and rigorous approach. This PhD thesis aims, on the one hand, at modelling Service Oriented Computing in a formal way in order to precisely define the main concepts it is based upon and, on the other hand, at defining a new approach, called bipolar approach, for addressing system design issues by synergically exploiting choreography and orchestration languages related by means of a mathematical relation called conformance. Choreography allows us to describe systems of services from a global view point whereas orchestration supplies a means for addressing such an issue from a local perspective. In this work we present SOCK, a process algebra based language inspired by the Web Service orchestration language WS-BPEL which catches the essentials of Service Oriented Computing. From the definition of SOCK we will able to define a general model for dealing with Service Oriented Computing where services and systems of services are related to the design of finite state automata and process algebra concurrent systems, respectively. Furthermore, we introduce a formal language for dealing with choreography. Such a language is equipped with a formal semantics and it forms, together with a subset of the SOCK calculus, the bipolar framework. Finally, we present JOLIE which is a Java implentation of a subset of the SOCK calculus and it is part of the bipolar framework we intend to promote.
Resumo:
Internet of Things systems are pervasive systems evolved from cyber-physical to large-scale systems. Due to the number of technologies involved, software development involves several integration challenges. Among them, the ones preventing proper integration are those related to the system heterogeneity, and thus addressing interoperability issues. From a software engineering perspective, developers mostly experience the lack of interoperability in the two phases of software development: programming and deployment. On the one hand, modern software tends to be distributed in several components, each adopting its most-appropriate technology stack, pushing programmers to code in a protocol- and data-agnostic way. On the other hand, each software component should run in the most appropriate execution environment and, as a result, system architects strive to automate the deployment in distributed infrastructures. This dissertation aims to improve the development process by introducing proper tools to handle certain aspects of the system heterogeneity. Our effort focuses on three of these aspects and, for each one of those, we propose a tool addressing the underlying challenge. The first tool aims to handle heterogeneity at the transport and application protocol level, the second to manage different data formats, while the third to obtain optimal deployment. To realize the tools, we adopted a linguistic approach, i.e.\ we provided specific linguistic abstractions that help developers to increase the expressive power of the programming language they use, writing better solutions in more straightforward ways. To validate the approach, we implemented use cases to show that the tools can be used in practice and that they help to achieve the expected level of interoperability. In conclusion, to move a step towards the realization of an integrated Internet of Things ecosystem, we target programmers and architects and propose them to use the presented tools to ease the software development process.
Resumo:
This PhD was driven by an interest for inclusive and participatory approaches. The methodology that bridges science and society is known as 'citizen science' and is experiencing a huge upsurge worldwide, in the scientific and humanities fields. In this thesis, I have focused on three topics: i) assessing the reliability of data collected by volunteers; ii) evaluating the impact of environmental education activities in tourist facilities; and iii) monitoring marine biodiversity through citizen science. In addition to these topics, during my research stay abroad, I developed a questionnaire to investigate people's perceptions of natural areas to promote the implementation of co-management. The results showed that volunteers are not only able to collect sufficiently reliable data, but that during their participation in this type of project, they can also increase their knowledge of marine biology and ecology and their awareness of the impact of human behaviour on the environment. The short-term analysis has shown that volunteers are able to retain what they have learned. In the long term, knowledge is usually forgotten, but awareness is retained. Increased awareness could lead to a change in behaviour and in this case a more environmentally friendly attitude. This aspect could be of interest for the development of environmental education projects in tourism facilities to reduce the impact of tourism on the environment while adding a valuable service to the tourism offer. We also found that nature experiences in childhood are important to connect to nature in adulthood. The results also suggest that membership or volunteering in an environmental education association could be a predictor of people's interest in more participatory approaches to nature management. In most cases, the COVID -19 pandemic had not changed participants' perceptions of the natural environment.
Resumo:
With the CERN LHC program underway, there has been an acceleration of data growth in the High Energy Physics (HEP) field and the usage of Machine Learning (ML) in HEP will be critical during the HL-LHC program when the data that will be produced will reach the exascale. ML techniques have been successfully used in many areas of HEP nevertheless, the development of a ML project and its implementation for production use is a highly time-consuming task and requires specific skills. Complicating this scenario is the fact that HEP data is stored in ROOT data format, which is mostly unknown outside of the HEP community. The work presented in this thesis is focused on the development of a ML as a Service (MLaaS) solution for HEP, aiming to provide a cloud service that allows HEP users to run ML pipelines via HTTP calls. These pipelines are executed by using the MLaaS4HEP framework, which allows reading data, processing data, and training ML models directly using ROOT files of arbitrary size from local or distributed data sources. Such a solution provides HEP users non-expert in ML with a tool that allows them to apply ML techniques in their analyses in a streamlined manner. Over the years the MLaaS4HEP framework has been developed, validated, and tested and new features have been added. A first MLaaS solution has been developed by automatizing the deployment of a platform equipped with the MLaaS4HEP framework. Then, a service with APIs has been developed, so that a user after being authenticated and authorized can submit MLaaS4HEP workflows producing trained ML models ready for the inference phase. A working prototype of this service is currently running on a virtual machine of INFN-Cloud and is compliant to be added to the INFN Cloud portfolio of services.
Resumo:
The pervasive availability of connected devices in any industrial and societal sector is pushing for an evolution of the well-established cloud computing model. The emerging paradigm of the cloud continuum embraces this decentralization trend and envisions virtualized computing resources physically located between traditional datacenters and data sources. By totally or partially executing closer to the network edge, applications can have quicker reactions to events, thus enabling advanced forms of automation and intelligence. However, these applications also induce new data-intensive workloads with low-latency constraints that require the adoption of specialized resources, such as high-performance communication options (e.g., RDMA, DPDK, XDP, etc.). Unfortunately, cloud providers still struggle to integrate these options into their infrastructures. That risks undermining the principle of generality that underlies the cloud computing scale economy by forcing developers to tailor their code to low-level APIs, non-standard programming models, and static execution environments. This thesis proposes a novel system architecture to empower cloud platforms across the whole cloud continuum with Network Acceleration as a Service (NAaaS). To provide commodity yet efficient access to acceleration, this architecture defines a layer of agnostic high-performance I/O APIs, exposed to applications and clearly separated from the heterogeneous protocols, interfaces, and hardware devices that implement it. A novel system component embodies this decoupling by offering a set of agnostic OS features to applications: memory management for zero-copy transfers, asynchronous I/O processing, and efficient packet scheduling. This thesis also explores the design space of the possible implementations of this architecture by proposing two reference middleware systems and by adopting them to support interactive use cases in the cloud continuum: a serverless platform and an Industry 4.0 scenario. A detailed discussion and a thorough performance evaluation demonstrate that the proposed architecture is suitable to enable the easy-to-use, flexible integration of modern network acceleration into next-generation cloud platforms.