46 resultados para Sensors and actuators
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The aim of this Ph.D. project has been the design and characterization of new and more efficient luminescent tools, in particular sensors and labels, for analytical chemistry, medical diagnostics and imaging. Actually both the increasing temporal and spatial resolutions that are demanded by those branches, coupled to a sensitivity that is required to reach the single molecule resolution, can be provided by the wide range of techniques based on luminescence spectroscopy. As far as the development of new chemical sensors is concerned, as chemists we were interested in the preparation of new, efficient, sensing materials. In this context, we kept developing new molecular chemosensors, by exploiting the supramolecular approach, for different classes of analytes. In particular we studied a family of luminescent tetrapodal-hosts based on aminopyridinium units with pyrenyl groups for the detection of anions. These systems exhibited noticeable changes in the photophysical properties, depending on the nature of the anion; in particular, addition of chloride resulted in a conformational change, giving an initial increase in excimeric emission. A good selectivity for dicarboxylic acid was also found. In the search for higher sensitivities, we moved our attention also to systems able to perform amplification effects. In this context we described the metal ion binding properties of three photoactive poly-(arylene ethynylene) co-polymers with different complexing units and we highlighted, for one of them, a ten-fold amplification of the response in case of addition of Zn2+, Cu2+ and Hg2+ ions. In addition, we were able to demonstrate the formation of complexes with Yb3+ an Er3+ and an efficient sensitization of their typical metal centered NIR emission upon excitation of the polymer structure, this feature being of particular interest for their possible applications in optical imaging and in optical amplification for telecommunication purposes. An amplification effect was also observed during this research in silica nanoparticles derivatized with a suitable zinc probe. In this case we were able to prove, for the first time, that nanoparticles can work as “off-on” chemosensors with signal amplification. Fluorescent silica nanoparticles can be thus seen as innovative multicomponent systems in which the organization of photophysically active units gives rise to fruitful collective effects. These precious effects can be exploited for biological imaging, medical diagnostic and therapeutics, as evidenced also by some results reported in this thesis. In particular, the observed amplification effect has been obtained thanks to a suitable organization of molecular probe units onto the surface of the nanoparticles. In the effort of reaching a deeper inside in the mechanisms which lead to the final amplification effects, we also attempted to find a correlation between the synthetic route and the final organization of the active molecules in the silica network, and thus with those mutual interactions between one another which result in the emerging, collective behavior, responsible for the desired signal amplification. In this context, we firstly investigated the process of formation of silica nanoparticles doped with pyrene derivative and we showed that the dyes are not uniformly dispersed inside the silica matrix; thus, core-shell structures can be formed spontaneously in a one step synthesis. Moreover, as far as the design of new labels is concerned, we reported a new synthetic approach to obtain a class of robust, biocompatible silica core-shell nanoparticles able to show a long-term stability. Taking advantage of this new approach we also showed the synthesis and photophysical properties of core-shell NIR absorbing and emitting materials that proved to be very valuable for in-vivo imaging. In general, the dye doped silica nanoparticles prepared in the framework of this project can conjugate unique properties, such as a very high brightness, due to the possibility to include many fluorophores per nanoparticle, high stability, because of the shielding effect of the silica matrix, and, to date, no toxicity, with a simple and low-cost preparation. All these features make these nanostructures suitable to reach the low detection limits that are nowadays required for effective clinical and environmental applications, fulfilling in this way the initial expectations of this research project.
Resumo:
Satellite remote sensing has proved to be an effective support in timely detection and monitoring of marine oil pollution, mainly due to illegal ship discharges. In this context, we have developed a new methodology and technique for optical oil spill detection, which make use of MODIS L2 and MERIS L1B satellite top of atmosphere (TOA) reflectance imagery, for the first time in a highly automated way. The main idea was combining wide swaths and short revisit times of optical sensors with SAR observations, generally used in oil spill monitoring. This arises from the necessity to overcome the SAR reduced coverage and long revisit time of the monitoring area. This can be done now, given the MODIS and MERIS higher spatial resolution with respect to older sensors (250-300 m vs. 1 km), which consents the identification of smaller spills deriving from illicit discharge at sea. The procedure to obtain identifiable spills in optical reflectance images involves removal of oceanic and atmospheric natural variability, in order to enhance oil-water contrast; image clustering, which purpose is to segment the oil spill eventually presents in the image; finally, the application of a set of criteria for the elimination of those features which look like spills (look-alikes). The final result is a classification of oil spill candidate regions by means of a score based on the above criteria.
Resumo:
Tracking activities during daily life and assessing movement parameters is essential for complementing the information gathered in confined environments such as clinical and physical activity laboratories for the assessment of mobility. Inertial measurement units (IMUs) are used as to monitor the motion of human movement for prolonged periods of time and without space limitations. The focus in this study was to provide a robust, low-cost and an unobtrusive solution for evaluating human motion using a single IMU. First part of the study focused on monitoring and classification of the daily life activities. A simple method that analyses the variations in signal was developed to distinguish two types of activity intervals: active and inactive. Neural classifier was used to classify active intervals; the angle with respect to gravity was used to classify inactive intervals. Second part of the study focused on extraction of gait parameters using a single inertial measurement unit (IMU) attached to the pelvis. Two complementary methods were proposed for gait parameters estimation. First method was a wavelet based method developed for the estimation of gait events. Second method was developed for estimating step and stride length during level walking using the estimations of the previous method. A special integration algorithm was extended to operate on each gait cycle using a specially designed Kalman filter. The developed methods were also applied on various scenarios. Activity monitoring method was used in a PRIN’07 project to assess the mobility levels of individuals living in a urban area. The same method was applied on volleyball players to analyze the fitness levels of them by monitoring their daily life activities. The methods proposed in these studies provided a simple, unobtrusive and low-cost solution for monitoring and assessing activities outside of controlled environments.
Resumo:
The Smart Grid needs a large amount of information to be operated and day by day new information is required to improve the operation performance. It is also fundamental that the available information is reliable and accurate. Therefore, the role of metrology is crucial, especially if applied to the distribution grid monitoring and the electrical assets diagnostics. This dissertation aims at better understanding the sensors and the instrumentation employed by the power system operators in the above-mentioned applications and studying new solutions. Concerning the research on the measurement applied to the electrical asset diagnostics: an innovative drone-based measurement system is proposed for monitoring medium voltage surge arresters. This system is described, and its metrological characterization is presented. On the other hand, the research regarding the measurements applied to the grid monitoring consists of three parts. The first part concerns the metrological characterization of the electronic energy meters’ operation under off-nominal power conditions. Original test procedures have been designed for both frequency and harmonic distortion as influence quantities, aiming at defining realistic scenarios. The second part deals with medium voltage inductive current transformers. An in-depth investigation on their accuracy behavior in presence of harmonic distortion is carried out by applying realistic current waveforms. The accuracy has been evaluated by means of the composite error index and its approximated version. Based on the same test setup, a closed-form expression for the measured current total harmonic distortion uncertainty estimation has been experimentally validated. The metrological characterization of a virtual phasor measurement unit is the subject of the third and last part: first, a calibrator has been designed and the uncertainty associated with its steady-state reference phasor has been evaluated; then this calibrator acted as a reference, and it has been used to characterize the phasor measurement unit implemented within a real-time simulator.
Resumo:
The design process of any electric vehicle system has to be oriented towards the best energy efficiency, together with the constraint of maintaining comfort in the vehicle cabin. Main aim of this study is to research the best thermal management solution in terms of HVAC efficiency without compromising occupant’s comfort and internal air quality. An Arduino controlled Low Cost System of Sensors was developed and compared against reference instrumentation (average R-squared of 0.92) and then used to characterise the vehicle cabin in real parking and driving conditions trials. Data on the energy use of the HVAC was retrieved from the car On-Board Diagnostic port. Energy savings using recirculation can reach 30 %, but pollutants concentration in the cabin builds up in this operating mode. Moreover, the temperature profile appeared strongly nonuniform with air temperature differences up to 10° C. Optimisation methods often require a high number of runs to find the optimal configuration of the system. Fast models proved to be beneficial for these task, while CFD-1D model are usually slower despite the higher level of detail provided. In this work, the collected dataset was used to train a fast ML model of both cabin and HVAC using linear regression. Average scaled RMSE over all trials is 0.4 %, while computation time is 0.0077 ms for each second of simulated time on a laptop computer. Finally, a reinforcement learning environment was built in OpenAI and Stable-Baselines3 using the built-in Proximal Policy Optimisation algorithm to update the policy and seek for the best compromise between comfort, air quality and energy reward terms. The learning curves show an oscillating behaviour overall, with only 2 experiments behaving as expected even if too slow. This result leaves large room for improvement, ranging from the reward function engineering to the expansion of the ML model.
Resumo:
Increasingly stringent exhaust emission limits and higher fuel economy are the main drivers of the engine development process. As a consequence, the complexity of the propulsion units and its subsystems increase, due to the extensive use of sensors and actuators needed to obtain a precise control over the combustion phase. Since engine calibration process consumes most of the development time, new tools and methodologies are needed to shorten the development time and increase the performance attainable. Real time combustion analysis, based on the in-cylinder pressure signal, can significantly improve the calibration of the engine control strategies and the development of new algorithms, giving instantaneous feedback on the engine behavior. A complete combustion analysis and diagnosis system has been developed, capable of evaluating the most important indicators about the combustion process, such as indicated mean effective pressure, heat release, mass fraction burned and knock indexes. Such a tool is built on top of a flexible, modular and affordable hardware platform, capable of satisfying the requirements needed for accuracy and precision, but also enabling the use directly on-board the vehicle, due to its small form factor.
Resumo:
A control-oriented model of a Dual Clutch Transmission was developed for real-time Hardware In the Loop (HIL) applications, to support model-based development of the DCT controller. The model is an innovative attempt to reproduce the fast dynamics of the actuation system while maintaining a step size large enough for real-time applications. The model comprehends a detailed physical description of hydraulic circuit, clutches, synchronizers and gears, and simplified vehicle and internal combustion engine sub-models. As the oil circulating in the system has a large bulk modulus, the pressure dynamics are very fast, possibly causing instability in a real-time simulation; the same challenge involves the servo valves dynamics, due to the very small masses of the moving elements. Therefore, the hydraulic circuit model has been modified and simplified without losing physical validity, in order to adapt it to the real-time simulation requirements. The results of offline simulations have been compared to on-board measurements to verify the validity of the developed model, that was then implemented in a HIL system and connected to the TCU (Transmission Control Unit). Several tests have been performed: electrical failure tests on sensors and actuators, hydraulic and mechanical failure tests on hydraulic valves, clutches and synchronizers, and application tests comprehending all the main features of the control performed by the TCU. Being based on physical laws, in every condition the model simulates a plausible reaction of the system. The first intensive use of the HIL application led to the validation of the new safety strategies implemented inside the TCU software. A test automation procedure has been developed to permit the execution of a pattern of tests without the interaction of the user; fully repeatable tests can be performed for non-regression verification, allowing the testing of new software releases in fully automatic mode.
Resumo:
The fourth industrial revolution is paving the way for Industrial Internet of Things applications where industrial assets (e.g., robotic arms, valves, pistons) are equipped with a large number of wireless devices (i.e., microcontroller boards that embed sensors and actuators) to enable a plethora of new applications, such as analytics, diagnostics, monitoring, as well as supervisory, and safety control use-cases. Nevertheless, current wireless technologies, such as Wi-Fi, Bluetooth, and even private 5G networks, cannot fulfill all the requirements set up by the Industry 4.0 paradigm, thus opening up new 6G-oriented research trends, such as the use of THz frequencies. In light of the above, this thesis provides (i) a broad overview of the main use-cases, requirements, and key enabling wireless technologies foreseen by the fourth industrial revolution, and (ii) proposes innovative contributions, both theoretical and empirical, to enhance the performance of current and future wireless technologies at different levels of the protocol stack. In particular, at the physical layer, signal processing techniques are being exploited to analyze two multiplexing schemes, namely Affine Frequency Division Multiplexing and Orthogonal Chirp Division Multiplexing, which seem promising for high-frequency wireless communications. At the medium access layer, three protocols for intra-machine communications are proposed, where one is based on LoRa at 2.4 GHz and the others work in the THz band. Different scheduling algorithms for private industrial 5G networks are compared, and two main proposals are described, i.e., a decentralized scheme that leverages machine learning techniques to better address aperiodic traffic patterns, and a centralized contention-based design that serves a federated learning industrial application. Results are provided in terms of numerical evaluations, simulation results, and real-world experiments. Several improvements over the state-of-the-art were obtained, and the description of up-and-running testbeds demonstrates the feasibility of some of the theoretical concepts when considering a real industry plant.
Resumo:
Recent progress in microelectronic and wireless communications have enabled the development of low cost, low power, multifunctional sensors, which has allowed the birth of new type of networks named wireless sensor networks (WSNs). The main features of such networks are: the nodes can be positioned randomly over a given field with a high density; each node operates both like sensor (for collection of environmental data) as well as transceiver (for transmission of information to the data retrieval); the nodes have limited energy resources. The use of wireless communications and the small size of nodes, make this type of networks suitable for a large number of applications. For example, sensor nodes can be used to monitor a high risk region, as near a volcano; in a hospital they could be used to monitor physical conditions of patients. For each of these possible application scenarios, it is necessary to guarantee a trade-off between energy consumptions and communication reliability. The thesis investigates the use of WSNs in two possible scenarios and for each of them suggests a solution that permits to solve relating problems considering the trade-off introduced. The first scenario considers a network with a high number of nodes deployed in a given geographical area without detailed planning that have to transmit data toward a coordinator node, named sink, that we assume to be located onboard an unmanned aerial vehicle (UAV). This is a practical example of reachback communication, characterized by the high density of nodes that have to transmit data reliably and efficiently towards a far receiver. It is considered that each node transmits a common shared message directly to the receiver onboard the UAV whenever it receives a broadcast message (triggered for example by the vehicle). We assume that the communication channels between the local nodes and the receiver are subject to fading and noise. The receiver onboard the UAV must be able to fuse the weak and noisy signals in a coherent way to receive the data reliably. It is proposed a cooperative diversity concept as an effective solution to the reachback problem. In particular, it is considered a spread spectrum (SS) transmission scheme in conjunction with a fusion center that can exploit cooperative diversity, without requiring stringent synchronization between nodes. The idea consists of simultaneous transmission of the common message among the nodes and a Rake reception at the fusion center. The proposed solution is mainly motivated by two goals: the necessity to have simple nodes (to this aim we move the computational complexity to the receiver onboard the UAV), and the importance to guarantee high levels of energy efficiency of the network, thus increasing the network lifetime. The proposed scheme is analyzed in order to better understand the effectiveness of the approach presented. The performance metrics considered are both the theoretical limit on the maximum amount of data that can be collected by the receiver, as well as the error probability with a given modulation scheme. Since we deal with a WSN, both of these performance are evaluated taking into consideration the energy efficiency of the network. The second scenario considers the use of a chain network for the detection of fires by using nodes that have a double function of sensors and routers. The first one is relative to the monitoring of a temperature parameter that allows to take a local binary decision of target (fire) absent/present. The second one considers that each node receives a decision made by the previous node of the chain, compares this with that deriving by the observation of the phenomenon, and transmits the final result to the next node. The chain ends at the sink node that transmits the received decision to the user. In this network the goals are to limit throughput in each sensor-to-sensor link and minimize probability of error at the last stage of the chain. This is a typical scenario of distributed detection. To obtain good performance it is necessary to define some fusion rules for each node to summarize local observations and decisions of the previous nodes, to get a final decision that it is transmitted to the next node. WSNs have been studied also under a practical point of view, describing both the main characteristics of IEEE802:15:4 standard and two commercial WSN platforms. By using a commercial WSN platform it is realized an agricultural application that has been tested in a six months on-field experimentation.
Resumo:
Investigation on impulsive signals, originated from Partial Discharge (PD) phenomena, represents an effective tool for preventing electric failures in High Voltage (HV) and Medium Voltage (MV) systems. The determination of both sensors and instruments bandwidths is the key to achieve meaningful measurements, that is to say, obtaining the maximum Signal-To-Noise Ratio (SNR). The optimum bandwidth depends on the characteristics of the system under test, which can be often represented as a transmission line characterized by signal attenuation and dispersion phenomena. It is therefore necessary to develop both models and techniques which can characterize accurately the PD propagation mechanisms in each system and work out the frequency characteristics of the PD pulses at detection point, in order to design proper sensors able to carry out PD measurement on-line with maximum SNR. Analytical models will be devised in order to predict PD propagation in MV apparatuses. Furthermore, simulation tools will be used where complex geometries make analytical models to be unfeasible. In particular, PD propagation in MV cables, transformers and switchgears will be investigated, taking into account both irradiated and conducted signals associated to PD events, in order to design proper sensors.
Sviluppo di un sistema miniaturizzato per il controllo real-time di assetto di nano e microsatelliti
Resumo:
Microsatelliti e nanosatelliti, come ad esempio i Cubesat, sono carenti di sistemi integrati di controllo d’assetto e di manovra orbitale. Lo scopo di questa tesi è stato quello di realizzare un sistema compatibile con Cubesat di una unità, completo di attuatori magnetici e attuatori meccanici, comprendente tutti i sensori e l’elettronica necessaria per il suo funzionamento, creando un dispositivo totalmente indipendente dal veicolo su cui è installato, capace di funzionare sia autonomamente che ricevendo comandi da terra. Nella tesi sono descritte le campagne di simulazioni numeriche effettuate per validare le scelte tecnologiche effettuate, le fasi di sviluppo dell’elettronica e della meccanica, i test sui prototipi realizzati e il funzionamento del sistema finale. Una integrazione così estrema dei componenti può implicare delle interferenze tra un dispositivo e l’altro, come nel caso dei magnetotorquer e dei magnetometri. Sono stati quindi studiati e valutati gli effetti della loro interazione, verificandone l’entità e la validità del progetto. Poiché i componenti utilizzati sono tutti di basso costo e di derivazione terrestre, è stata effettuata una breve introduzione teorica agli effetti dell’ambiente spaziale sull’elettronica, per poi descrivere un sistema fault-tolerant basato su nuove teorie costruttive. Questo sistema è stato realizzato e testato, verificando così la possibilità di realizzare un controller affidabile e resistente all’ambiente spaziale per il sistema di controllo d’assetto. Sono state infine analizzate alcune possibili versioni avanzate del sistema, delineandone i principali aspetti progettuali, come ad esempio l’integrazione di GPS e l’implementazione di funzioni di determinazione d’assetto sfruttando i sensori presenti a bordo.
Resumo:
Beamforming entails joint processing of multiple signals received or transmitted by an array of antennas. This thesis addresses the implementation of beamforming in two distinct systems, namely a distributed network of independent sensors, and a broad-band multi-beam satellite network. With the rising popularity of wireless sensors, scientists are taking advantage of the flexibility of these devices, which come with very low implementation costs. Simplicity, however, is intertwined with scarce power resources, which must be carefully rationed to ensure successful measurement campaigns throughout the whole duration of the application. In this scenario, distributed beamforming is a cooperative communication technique, which allows nodes in the network to emulate a virtual antenna array seeking power gains in the order of the size of the network itself, when required to deliver a common message signal to the receiver. To achieve a desired beamforming configuration, however, all nodes in the network must agree upon the same phase reference, which is challenging in a distributed set-up where all devices are independent. The first part of this thesis presents new algorithms for phase alignment, which prove to be more energy efficient than existing solutions. With the ever-growing demand for broad-band connectivity, satellite systems have the great potential to guarantee service where terrestrial systems can not penetrate. In order to satisfy the constantly increasing demand for throughput, satellites are equipped with multi-fed reflector antennas to resolve spatially separated signals. However, incrementing the number of feeds on the payload corresponds to burdening the link between the satellite and the gateway with an extensive amount of signaling, and to possibly calling for much more expensive multiple-gateway infrastructures. This thesis focuses on an on-board non-adaptive signal processing scheme denoted as Coarse Beamforming, whose objective is to reduce the communication load on the link between the ground station and space segment.
Resumo:
This thesis presents several data processing and compression techniques capable of addressing the strict requirements of wireless sensor networks. After introducing a general overview of sensor networks, the energy problem is introduced, dividing the different energy reduction approaches according to the different subsystem they try to optimize. To manage the complexity brought by these techniques, a quick overview of the most common middlewares for WSNs is given, describing in detail SPINE2, a framework for data processing in the node environment. The focus is then shifted on the in-network aggregation techniques, used to reduce data sent by the network nodes trying to prolong the network lifetime as long as possible. Among the several techniques, the most promising approach is the Compressive Sensing (CS). To investigate this technique, a practical implementation of the algorithm is compared against a simpler aggregation scheme, deriving a mixed algorithm able to successfully reduce the power consumption. The analysis moves from compression implemented on single nodes to CS for signal ensembles, trying to exploit the correlations among sensors and nodes to improve compression and reconstruction quality. The two main techniques for signal ensembles, Distributed CS (DCS) and Kronecker CS (KCS), are introduced and compared against a common set of data gathered by real deployments. The best trade-off between reconstruction quality and power consumption is then investigated. The usage of CS is also addressed when the signal of interest is sampled at a Sub-Nyquist rate, evaluating the reconstruction performance. Finally the group sparsity CS (GS-CS) is compared to another well-known technique for reconstruction of signals from an highly sub-sampled version. These two frameworks are compared again against a real data-set and an insightful analysis of the trade-off between reconstruction quality and lifetime is given.
Resumo:
Organic molecular semiconductors are subject of intense research for their crucial role as key components of new generation low cost, flexible, and large area electronic devices such as displays, thin-film transistors, solar cells, sensors and logic circuits. In particular, small molecular thienoimide (TI) based materials are emerging as novel multifunctional materials combining a good processability together to ambipolar or n-type charge transport and electroluminescence at the solid state, thus enabling the fabrication of integrated devices like organic field effect transistors (OFETs) and light emitting transistor (OLETs). Given this peculiar combination of characteristics, they also constitute the ideal substrates for fundamental studies on the structure-property relationships in multifunctional molecular systems. In this scenario, this thesis work is focused on the synthesis of new thienoimide based materials with tunable optical, packing, morphology, charge transport and electroluminescence properties by following a fine molecular tailoring, thus optimizing their performances in device as well as investigating and enabling new applications. Investigation on their structure-property relationships has been carried out and in particular, the effect of different π-conjugated cores (heterocycles, length) and alkyl end chain (shape, length) changes have been studied, obtaining materials with enhanced electron transport capability end electroluminescence suitable for the realization of OFETs and single layer OLETs. Moreover, control on the polymorphic behaviour characterizing thienoimide materials has been reached by synthetic and post-synthetic methodologies, developing multifunctional materials from a single polymorphic compound. Finally, with the aim of synthesizing highly pure materials, simplifying the purification steps and avoiding organometallic residues, procedures based on direct arylation reactions replacing conventional cross-couplings have been investigated and applied to different classes of molecules, bearing thienoimidic core or ends, as well as thiophene and anthracene derivatives, validating this approach as a clean alternative for the synthesis of several molecular materials.
Resumo:
Nowadays, application domains such as smart cities, agriculture or intelligent transportation, require communication technologies that combine long transmission ranges and energy efficiency to fulfill a set of capabilities and constraints to rely on. In addition, in recent years, the interest in Unmanned Aerial Vehicles (UAVs) providing wireless connectivity in such scenarios is substantially increased thanks to their flexible deployment. The first chapters of this thesis deal with LoRaWAN and Narrowband-IoT (NB-IoT), which recent trends identify as the most promising Low Power Wide Area Networks technologies. While LoRaWAN is an open protocol that has gained a lot of interest thanks to its simplicity and energy efficiency, NB-IoT has been introduced from 3GPP as a radio access technology for massive machine-type communications inheriting legacy LTE characteristics. This thesis offers an overview of the two, comparing them in terms of selected performance indicators. In particular, LoRaWAN technology is assessed both via simulations and experiments, considering different network architectures and solutions to improve its performance (e.g., a new Adaptive Data Rate algorithm). NB-IoT is then introduced to identify which technology is more suitable depending on the application considered. The second part of the thesis introduces the use of UAVs as flying Base Stations, denoted as Unmanned Aerial Base Stations, (UABSs), which are considered as one of the key pillars of 6G to offer service for a number of applications. To this end, the performance of an NB-IoT network are assessed considering a UABS following predefined trajectories. Then, machine learning algorithms based on reinforcement learning and meta-learning are considered to optimize the trajectory as well as the radio resource management techniques the UABS may rely on in order to provide service considering both static (IoT sensors) and dynamic (vehicles) users. Finally, some experimental projects based on the technologies mentioned so far are presented.