5 resultados para Semi-implicit methods
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The clonal distribution of BRAFV600E in papillary thyroid carcinoma (PTC) has been recently debated. No information is currently available about precursor lesions of PTCs. My first aim was to establish whether the BRAFV600E mutation occurs as a subclonal event in PTCs. My second aim was to screen BRAF mutations in histologically benign tissue of cases with BRAFV600E or BRAFwt PTCs in order to identify putative precursor lesions of PTCs. Highly sensitive semi-quantitative methods were used: Allele Specific LNA quantitative PCR (ASLNAqPCR) and 454 Next-Generation Sequencing (NGS). For the first aim 155 consecutive formalin-fixed and paraffin-embedded (FFPE) specimens of PTCs were analyzed. The percentage of mutated cells obtained was normalized to the estimated number of neoplastic cells. Three groups of tumors were identified: a first had a percentage of BRAF mutated neoplastic cells > 80%; a second group showed a number of BRAF mutated neoplastic cells < 30%; a third group had a distribution of BRAFV600E between 30-80%. The large presence of BRAFV600E mutated neoplastic cell sub-populations suggests that BRAFV600E may be acquired early during tumorigenesis: therefore, BRAFV600E can be heterogeneously distributed in PTC. For the second aim, two groups were studied: one consisted of 20 cases with BRAFV600E mutated PTC, the other of 9 BRAFwt PTCs. Seventy-five and 23 histologically benign FFPE thyroid specimens were analyzed from the BRAFV600E mutated and BRAFwt PTC groups, respectively. The screening of BRAF mutations identified BRAFV600E in “atypical” cell foci from both groups of patients. “Unusual” BRAF substitutions were observed in histologically benign thyroid associated with BRAFV600E PTCs. These mutations were very uncommon in the group with BRAFwt PTCs and in BRAFV600E PTCs. Therefore, lesions carrying BRAF mutations may represent “abortive” attempts at cancer development: only BRAFV600E boosts neoplastic transformation to PTC. BRAFV600E mutated “atypical foci” may represent precursor lesions of BRAFV600E mutated PTCs.
Resumo:
The physico-chemical characterization, structure-pharmacokinetic and metabolism studies of new semi synthetic analogues of natural bile acids (BAs) drug candidates have been performed. Recent studies discovered a role of BAs as agonists of FXR and TGR5 receptor, thus opening new therapeutic target for the treatment of liver diseases or metabolic disorders. Up to twenty new semisynthetic analogues have been synthesized and studied in order to find promising novel drugs candidates. In order to define the BAs structure-activity relationship, their main physico-chemical properties (solubility, detergency, lipophilicity and affinity with serum albumin) have been measured with validated analytical methodologies. Their metabolism and biodistribution has been studied in “bile fistula rat”, model where each BA is acutely administered through duodenal and femoral infusion and bile collected at different time interval allowing to define the relationship between structure and intestinal absorption and hepatic uptake ,metabolism and systemic spill-over. One of the studied analogues, 6α-ethyl-3α7α-dihydroxy-5β-cholanic acid, analogue of CDCA (INT 747, Obeticholic Acid (OCA)), recently under approval for the treatment of cholestatic liver diseases, requires additional studies to ensure its safety and lack of toxicity when administered to patients with a strong liver impairment. For this purpose, CCl4 inhalation to rat causing hepatic decompensation (cirrhosis) animal model has been developed and used to define the difference of OCA biodistribution in respect to control animals trying to define whether peripheral tissues might be also exposed as a result of toxic plasma levels of OCA, evaluating also the endogenous BAs biodistribution. An accurate and sensitive HPLC-ES-MS/MS method is developed to identify and quantify all BAs in biological matrices (bile, plasma, urine, liver, kidney, intestinal content and tissue) for which a sample pretreatment have been optimized.
Resumo:
In this thesis two major topics inherent with medical ultrasound images are addressed: deconvolution and segmentation. In the first case a deconvolution algorithm is described allowing statistically consistent maximum a posteriori estimates of the tissue reflectivity to be restored. These estimates are proven to provide a reliable source of information for achieving an accurate characterization of biological tissues through the ultrasound echo. The second topic involves the definition of a semi automatic algorithm for myocardium segmentation in 2D echocardiographic images. The results show that the proposed method can reduce inter- and intra observer variability in myocardial contours delineation and is feasible and accurate even on clinical data.
Resumo:
The consumer demand for natural, minimally processed, fresh like and functional food has lead to an increasing interest in emerging technologies. The aim of this PhD project was to study three innovative food processing technologies currently used in the food sector. Ultrasound-assisted freezing, vacuum impregnation and pulsed electric field have been investigated through laboratory scale systems and semi-industrial pilot plants. Furthermore, analytical and sensory techniques have been developed to evaluate the quality of food and vegetable matrix obtained by traditional and emerging processes. Ultrasound was found to be a valuable technique to improve the freezing process of potatoes, anticipating the beginning of the nucleation process, mainly when applied during the supercooling phase. A study of the effects of pulsed electric fields on phenol and enzymatic profile of melon juice has been realized and the statistical treatment of data was carried out through a response surface method. Next, flavour enrichment of apple sticks has been realized applying different techniques, as atmospheric, vacuum, ultrasound technologies and their combinations. The second section of the thesis deals with the development of analytical methods for the discrimination and quantification of phenol compounds in vegetable matrix, as chestnut bark extracts and olive mill waste water. The management of waste disposal in mill sector has been approached with the aim of reducing the amount of waste, and at the same time recovering valuable by-products, to be used in different industrial sectors. Finally, the sensory analysis of boiled potatoes has been carried out through the development of a quantitative descriptive procedure for the study of Italian and Mexican potato varieties. An update on flavour development in fresh and cooked potatoes has been realized and a sensory glossary, including general and specific definitions related to organic products, used in the European project Ecropolis, has been drafted.
Resumo:
The use of guided ultrasonic waves (GUW) has increased considerably in the fields of non-destructive (NDE) testing and structural health monitoring (SHM) due to their ability to perform long range inspections, to probe hidden areas as well as to provide a complete monitoring of the entire waveguide. Guided waves can be fully exploited only once their dispersive properties are known for the given waveguide. In this context, well stated analytical and numerical methods are represented by the Matrix family methods and the Semi Analytical Finite Element (SAFE) methods. However, while the former are limited to simple geometries of finite or infinite extent, the latter can model arbitrary cross-section waveguides of finite domain only. This thesis is aimed at developing three different numerical methods for modelling wave propagation in complex translational invariant systems. First, a classical SAFE formulation for viscoelastic waveguides is extended to account for a three dimensional translational invariant static prestress state. The effect of prestress, residual stress and applied loads on the dispersion properties of the guided waves is shown. Next, a two-and-a-half Boundary Element Method (2.5D BEM) for the dispersion analysis of damped guided waves in waveguides and cavities of arbitrary cross-section is proposed. The attenuation dispersive spectrum due to material damping and geometrical spreading of cavities with arbitrary shape is shown for the first time. Finally, a coupled SAFE-2.5D BEM framework is developed to study the dispersion characteristics of waves in viscoelastic waveguides of arbitrary geometry embedded in infinite solid or liquid media. Dispersion of leaky and non-leaky guided waves in terms of speed and attenuation, as well as the radiated wavefields, can be computed. The results obtained in this thesis can be helpful for the design of both actuation and sensing systems in practical application, as well as to tune experimental setup.