2 resultados para Self-weight Consolidation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Low molecular weight gelators (LMWGs) based on pseudo-peptides are here studied for the preparation of supramolecular materials. These compounds can self-assemble through non-covalent interactions such as hydrogen bonds and π-π stacking, forming fibres and gels. A wide variety of materials can be prepared starting from these building blocks, which can be tuned and functionalised depending on the application. In this work, derivatives of the three aromatic amino acids L-Phenylalanine, L-Tyrosine and L-DOPA (3,4-dihydroxiphenylalanine) were synthesised and tested as gelators for water or organic solvents. First, the optimal gelating conditions were studied for each compound, varying concentration, solvent and trigger. Then the materials were characterised in terms of mechanical properties and morphology. Water remediation from dye pollution was the first focus of this work. Organogels were studied as absorbent of dyes from contaminated water. Hydrogels functionalised with TiO2 nanoparticles and graphene platelets were proposed as efficient materials for the photo-degradation of dyes. An efficient method for the incorporation of graphene inside hydrogels using the gelator itself as dispersant was proposed. In these materials a high storage modulus coexists with good self-healing and biocompatibility. The incorporation of a mineral phase inside the gel matrix was then investigated, leading to the preparation of composite organic/inorganic materials. In a first study, the growth of calcium carbonate crystals was achieved inside the hydrogel, which preserved its structure after crystal formation. Then the self-assembled fibres made of LMWGs were used for the first time instead of the polymeric ones as reinforcement inside calcium phosphate cements (CPCs) for bone regeneration. Gel-to-crystal transitions occurring with time in a metastable gel were also examined. The formation of organic crystals in gels can be achieved in multicomponent systems, in which a second gelator constitutes the independent gel network. Finally, some compounds unable to gelate were tested as underwater adhesives.
Resumo:
Composite laminates present important advantages compared to conventional monolithic materials, mainly because for equal stiffness and strength they have a weight up to four times lower. However, due to their ply-by-ply nature, they are susceptible to delamination, whose propagation can bring the structure to a rapid catastrophic failure. In this thesis, in order to increase the service life of composite materials, two different approaches were explored: increase the intrinsic resistance of the material or confer to them the capability of self-repair. The delamination has been hindered through interleaving the composite laminates with polymeric nanofibers, which completed the hierarchical reinforcement scale of the composite. The manufacturing process for the integration of the nanofibrous mat in the laminate was optimized, resulting in an enhancement of mode I fracture toughness up to 250%. The effect of the geometrical dimensions of the nano-reinforcement on the architecture of the micro one (UD and woven laminates) was studied on mode I and II. Moreover, different polymeric materials were employed as nanofibrous reinforcement (Nylon 66 and polyvinylidene fluoride). The nano toughening mechanism was studied by micrograph analysis of the crack path and SEM analysis of the fracture surface. The fatigue behavior to the onset of the delamination and the crack growth rate for woven laminates interleaved with Nylon 66 nanofibers was investigated. Furthermore, the impact behavior of GLARE aluminum-glass epoxy laminates, toughened with Nylon 66 nanofibers was investigated. Finally, the possibility of confer to the composite material the capability of self-repair was explored. An extrinsic self-healing-system, based on core-shell nanofibers filled with a two-component epoxy system, was developed by co-electrospinning technique. The healing potential of the nano vascular system has been proved by microscope electron observation of the healing agent release as result of the vessels rupture and the crosslinking reaction was verified by thermal analysis.