5 resultados para Self-healing network
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This dissertation concerns active fibre-reinforced composites with embedded shape memory alloy wires. The structural application of active materials allows to develop adaptive structures which actively respond to changes in the environment, such as morphing structures, self-healing structures and power harvesting devices. In particular, shape memory alloy actuators integrated within a composite actively control the structural shape or stiffness, thus influencing the composite static and dynamic properties. Envisaged applications include, among others, the prevention of thermal buckling of the outer skin of air vehicles, shape changes in panels for improved aerodynamic characteristics and the deployment of large space structures. The study and design of active composites is a complex and multidisciplinary topic, requiring in-depth understanding of both the coupled behaviour of active materials and the interaction between the different composite constituents. Both fibre-reinforced composites and shape memory alloys are extremely active research topics, whose modelling and experimental characterisation still present a number of open problems. Thus, while this dissertation focuses on active composites, some of the research results presented here can be usefully applied to traditional fibre-reinforced composites or other shape memory alloy applications. The dissertation is composed of four chapters. In the first chapter, active fibre-reinforced composites are introduced by giving an overview of the most common choices available for the reinforcement, matrix and production process, together with a brief introduction and classification of active materials. The second chapter presents a number of original contributions regarding the modelling of fibre-reinforced composites. Different two-dimensional laminate theories are derived from a parent three-dimensional theory, introducing a procedure for the a posteriori reconstruction of transverse stresses along the laminate thickness. Accurate through the thickness stresses are crucial for the composite modelling as they are responsible for some common failure mechanisms. A new finite element based on the First-order Shear Deformation Theory and a hybrid stress approach is proposed for the numerical solution of the two-dimensional laminate problem. The element is simple and computationally efficient. The transverse stresses through the laminate thickness are reconstructed starting from a general finite element solution. A two stages procedure is devised, based on Recovery by Compatibility in Patches and three-dimensional equilibrium. Finally, the determination of the elastic parameters of laminated structures via numerical-experimental Bayesian techniques is investigated. Two different estimators are analysed and compared, leading to the definition of an alternative procedure to improve convergence of the estimation process. The third chapter focuses on shape memory alloys, describing their properties and applications. A number of constitutive models proposed in the literature, both one-dimensional and three-dimensional, are critically discussed and compared, underlining their potential and limitations, which are mainly related to the definition of the phase diagram and the choice of internal variables. Some new experimental results on shape memory alloy material characterisation are also presented. These experimental observations display some features of the shape memory alloy behaviour which are generally not included in the current models, thus some ideas are proposed for the development of a new constitutive model. The fourth chapter, finally, focuses on active composite plates with embedded shape memory alloy wires. A number of di®erent approaches can be used to predict the behaviour of such structures, each model presenting different advantages and drawbacks related to complexity and versatility. A simple model able to describe both shape and stiffness control configurations within the same context is proposed and implemented. The model is then validated considering the shape control configuration, which is the most sensitive to model parameters. The experimental work is divided in two parts. In the first part, an active composite is built by gluing prestrained shape memory alloy wires on a carbon fibre laminate strip. This structure is relatively simple to build, however it is useful in order to experimentally demonstrate the feasibility of the concept proposed in the first part of the chapter. In the second part, the making of a fibre-reinforced composite with embedded shape memory alloy wires is investigated, considering different possible choices of materials and manufacturing processes. Although a number of technological issues still need to be faced, the experimental results allow to demonstrate the mechanism of shape control via embedded shape memory alloy wires, while showing a good agreement with the proposed model predictions.
Resumo:
Supramolecular self-assembly represents a key technology for the spontaneous construction of nanoarchitectures and for the fabrication of materials with enhanced physical and chemical properties. In addition, a significant asset of supramolecular self-assemblies rests on their reversible formation, thanks to the kinetic lability of their non-covalent interactions. This dynamic nature can be exploited for the development of “self-healing” and “smart” materials towards the tuning of their functional properties upon various external factors. One particular intriguing objective in the field is to reach a high level of control over the shape and size of the supramolecular architectures, in order to produce well-defined functional nanostructures by rational design. In this direction, many investigations have been pursued toward the construction of self-assembled objects from numerous low-molecular weight scaffolds, for instance by exploiting multiple directional hydrogen-bonding interactions. In particular, nucleobases have been used as supramolecular synthons as a result of their efficiency to code for non-covalent interaction motifs. Among nucleobases, guanine represents the most versatile one, because of its different H-bond donor and acceptor sites which display self-complementary patterns of interactions. Interestingly, and depending on the environmental conditions, guanosine derivatives can form various types of structures. Most of the supramolecular architectures reported in this Thesis from guanosine derivatives require the presence of a cation which stabilizes, via dipole-ion interactions, the macrocyclic G-quartet that can, in turn, stack in columnar G-quadruplex arrangements. In addition, in absence of cations, guanosine can polymerize via hydrogen bonding to give a variety of supramolecular networks including linear ribbons. This complex supramolecular behavior confers to the guanine-guanine interactions their upper interest among all the homonucleobases studied. They have been subjected to intense investigations in various areas ranging from structural biology and medicinal chemistry – guanine-rich sequences are abundant in telomeric ends of chromosomes and promoter regions of DNA, and are capable of forming G-quartet based structures– to material science and nanotechnology. This Thesis, organized into five Chapters, describes mainly some recent advances in the form and function provided by self-assembly of guanine based systems. More generally, Chapter 4 will focus on the construction of supramolecular self-assemblies whose self-assembling process and self-assembled architectures can be controlled by light as external stimulus. Chapter 1 will describe some of the many recent studies of G-quartets in the general area of nanoscience. Natural G- quadruplexes can be useful motifs to build new structures and biomaterials such as self-assembled nanomachines, biosensors, therapeutic aptamer and catalysts. In Chapters 2-4 it is pointed out the core concept held in this PhD Thesis, i.e. the supramolecular organization of lipophilic guanosine derivatives with photo or chemical addressability. Chapter 2 will mainly focus on the use of cation-templated guanosine derivatives as a potential scaffold for designing functional materials with tailored physical properties, showing a new way to control the bottom-up realization of well-defined nanoarchitectures. In section 2.6.7, the self-assembly properties of compound 28a may be considered an example of open-shell moieties ordered by a supramolecular guanosine architecture showing a new (magnetic) property. Chapter 3 will report on ribbon-like structures, supramolecular architectures formed by guanosine derivatives that may be of interest for the fabrication of molecular nanowires within the framework of future molecular electronic applications. In section 3.4 we investigate the supramolecular polymerizations of derivatives dG 1 and G 30 by light scattering technique and TEM experiments. The obtained data reveal the presence of several levels of organization due to the hierarchical self-assembly of the guanosine units in ribbons that in turn aggregate in fibrillar or lamellar soft structures. The elucidation of these structures furnishes an explanation to the physical behaviour of guanosine units which display organogelator properties. Chapter 4 will describe photoresponsive self-assembling systems. Numerous research examples have demonstrated that the use of photochromic molecules in supramolecular self-assemblies is the most reasonable method to noninvasively manipulate their degree of aggregation and supramolecular architectures. In section 4.4 we report on the photocontrolled self-assembly of modified guanosine nucleobase E-42: by the introduction of a photoactive moiety at C8 it is possible to operate a photocontrol over the self-assembly of the molecule, where the existence of G-quartets can be alternately switched on and off. In section 4.5 we focus on the use of cyclodextrins as photoresponsive host-guest assemblies: αCD–azobenzene conjugates 47-48 (section 4.5.3) are synthesized in order to obtain a photoresponsive system exhibiting a fine photocontrollable degree of aggregation and self-assembled architecture. Finally, Chapter 5 contains the experimental protocols used for the research described in Chapters 2-4.
Resumo:
The question addressed by this dissertation is how the human brain builds a coherent representation of the body, and how this representation is used to recognize its own body. Recent approaches by neuroimaging and TMS revealed hints for a distinct brain representation of human body, as compared with other stimulus categories. Neuropsychological studies demonstrated that body-parts and self body-parts recognition are separate processes sub-served by two different, even if possibly overlapping, networks within the brain. Bodily self-recognition is one aspect of our ability to distinguish between self and others and the self/other distinction is a crucial aspect of social behaviour. This is the reason why I have conducted a series of experiment on subjects with everyday difficulties in social and emotional behaviour, such as patients with autism spectrum disorders (ASD) and patients with Parkinson’s disease (PD). More specifically, I studied the implicit self body/face recognition (Chapter 6) and the influence of emotional body postures on bodily self-processing in TD children as well as in ASD children (Chapter 7). I found that the bodily self-recognition is present in TD and in ASD children and that emotional body postures modulate self and others’ body processing. Subsequently, I compared implicit and explicit bodily self-recognition in a neuro-degenerative pathology, such as in PD patients, and I found a selective deficit in implicit but not in explicit self-recognition (Chapter 8). This finding suggests that implicit and explicit bodily self-recognition are separate processes subtended by different mechanisms that can be selectively impaired. If the bodily self is crucial for self/other distinction, the space around the body (personal space) represents the space of interaction and communication with others. When, I studied this space in autism, I found that personal space regulation is impaired in ASD children (Chapter 9).
Resumo:
The Peer-to-Peer network paradigm is drawing the attention of both final users and researchers for its features. P2P networks shift from the classic client-server approach to a high level of decentralization where there is no central control and all the nodes should be able not only to require services, but to provide them to other peers as well. While on one hand such high level of decentralization might lead to interesting properties like scalability and fault tolerance, on the other hand it implies many new problems to deal with. A key feature of many P2P systems is openness, meaning that everybody is potentially able to join a network with no need for subscription or payment systems. The combination of openness and lack of central control makes it feasible for a user to free-ride, that is to increase its own benefit by using services without allocating resources to satisfy other peers’ requests. One of the main goals when designing a P2P system is therefore to achieve cooperation between users. Given the nature of P2P systems based on simple local interactions of many peers having partial knowledge of the whole system, an interesting way to achieve desired properties on a system scale might consist in obtaining them as emergent properties of the many interactions occurring at local node level. Two methods are typically used to face the problem of cooperation in P2P networks: 1) engineering emergent properties when designing the protocol; 2) study the system as a game and apply Game Theory techniques, especially to find Nash Equilibria in the game and to reach them making the system stable against possible deviant behaviors. In this work we present an evolutionary framework to enforce cooperative behaviour in P2P networks that is alternative to both the methods mentioned above. Our approach is based on an evolutionary algorithm inspired by computational sociology and evolutionary game theory, consisting in having each peer periodically trying to copy another peer which is performing better. The proposed algorithms, called SLAC and SLACER, draw inspiration from tag systems originated in computational sociology, the main idea behind the algorithm consists in having low performance nodes copying high performance ones. The algorithm is run locally by every node and leads to an evolution of the network both from the topology and from the nodes’ strategy point of view. Initial tests with a simple Prisoners’ Dilemma application show how SLAC is able to bring the network to a state of high cooperation independently from the initial network conditions. Interesting results are obtained when studying the effect of cheating nodes on SLAC algorithm. In fact in some cases selfish nodes rationally exploiting the system for their own benefit can actually improve system performance from the cooperation formation point of view. The final step is to apply our results to more realistic scenarios. We put our efforts in studying and improving the BitTorrent protocol. BitTorrent was chosen not only for its popularity but because it has many points in common with SLAC and SLACER algorithms, ranging from the game theoretical inspiration (tit-for-tat-like mechanism) to the swarms topology. We discovered fairness, meant as ratio between uploaded and downloaded data, to be a weakness of the original BitTorrent protocol and we drew inspiration from the knowledge of cooperation formation and maintenance mechanism derived from the development and analysis of SLAC and SLACER, to improve fairness and tackle freeriding and cheating in BitTorrent. We produced an extension of BitTorrent called BitFair that has been evaluated through simulation and has shown the abilities of enforcing fairness and tackling free-riding and cheating nodes.
Resumo:
Many research fields are pushing the engineering of large-scale, mobile, and open systems towards the adoption of techniques inspired by self-organisation: pervasive computing, but also distributed artificial intelligence, multi-agent systems, social networks, peer-topeer and grid architectures exploit adaptive techniques to make global system properties emerge in spite of the unpredictability of interactions and behaviour. Such a trend is visible also in coordination models and languages, whenever a coordination infrastructure needs to cope with managing interactions in highly dynamic and unpredictable environments. As a consequence, self-organisation can be regarded as a feasible metaphor to define a radically new conceptual coordination framework. The resulting framework defines a novel coordination paradigm, called self-organising coordination, based on the idea of spreading coordination media over the network, and charge them with services to manage interactions based on local criteria, resulting in the emergence of desired and fruitful global coordination properties of the system. Features like topology, locality, time-reactiveness, and stochastic behaviour play a key role in both the definition of such a conceptual framework and the consequent development of self-organising coordination services. According to this framework, the thesis presents several self-organising coordination techniques developed during the PhD course, mainly concerning data distribution in tuplespace-based coordination systems. Some of these techniques have been also implemented in ReSpecT, a coordination language for tuple spaces, based on logic tuples and reactions to events occurring in a tuple space. In addition, the key role played by simulation and formal verification has been investigated, leading to analysing how automatic verification techniques like probabilistic model checking can be exploited in order to formally prove the emergence of desired behaviours when dealing with coordination approaches based on self-organisation. To this end, a concrete case study is presented and discussed.