5 resultados para Self-adhesive resin luting cement
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The primary aim was to evaluate the effect of 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide (EDC) on endogenous enzymatic activity within radicular dentin and push-out bond strength of adhesively luted fiber posts, at baseline and after artificial aging. Additionally, the effect of different cementation strategies on endogenous enzymatic activity and fiber post retention was evaluated. The experiment was carried out on extracted human teeth, following endodontic treatment and fiber post cementation. Three cementation strategies were performed: resin cement in combination with etch-and-rinse (EAR) adhesive system, with self-etch (SE) system and self-adhesive (SE) cement. Each of the mentioned strategies had a control and experimental (EDC) group in which root canal was irrigated with 0.3M EDC for 1 minute. The push-out bond strength test was performed 24h after cementation and after 40.000 thermocycles. In order to investigate the effect of EDC and different cementation strategies, in situ zymography analyses of the resin-dentin interfaces were conducted. Statistical analyses were conducted with the software Stata 12.0 (Stata Corp, College Station, Texas, USA) and the significance was set for p<0.05. The results of statistical analysis (ANOVA) showed that the variables “EDC”, “root region” and “artificial aging” significantly influenced fiber posts’ retention to root canal (p<0.05). The highest values were observed in coronal third. The mean values observed after artificial aging were lower when compared to baseline, however EDC was effective in preserving bond strength. The level of enzymatic activity varied between the groups and EDC had a beneficial effect on silencing the enzymatic activity. Within the limitations of the study, it was concluded that the choice of cementation strategy did not influence posts’ retention, while EDC contributed to the preservation of bond strength after artificial aging and reduced enzymatic activity within radicular dentin. In vivo trials are necessary to confirm the results of this in vitro study.
Resumo:
Among the most representative materials of XX Century architectural heritage, this dissertation focuses on the cement-based ones, investigating some different fields where they were exploited. Primarily, concerning the surface preservation of cement-based materials used with aesthetic intent, new self-cleaning treatments based on titania nanoparticles embedded in inorganic matrices were tested. In order to consider the role of porosity, the treatments were applied to different kinds of materials (cement-based mortar, marble and concrete) and several analyses were conducted to investigate the morphology of the coatings, their photocatalytic effectiveness, their durability and the interaction between the coating and the substrate material. The outcomes showed that several parameters influence the treatment’s performances, in particular, the presence and nature of the matrix, the concentration and dispersion of nanoparticles and, in some cases, the amount of substrate material which interacts with the coatings. Secondly, this dissertation deals with the historic “Terranova” render, a colored dry-mix mortar largely widespread in Europe in the first half of XX Century, whose formulation is still basically unknown. Some original samples of supposedly Terranova renders were subjected to several characterization analyses and the results were compared to those of the original “Terranova” render of the Engineering Faculty in Bologna. Despite the recurrence of some features, defining a common formulation seemed to be challenging. Finally, the repair and conservation of structural reinforced concrete in heritage buildings were investigated, adopting the former “Casa del Fascio” in Predappio (FC, Italy) as case study. Three different materials and solutions were tested on a slab of the building, making its repair only from the intrados. Then several analyses were conducted both on site and in laboratory. Aside from the specific features characterizing every product, the results highlighted that the application method played a fundamental role in the effectiveness of the retrofit strategies.
Resumo:
Objective: The aims of this thesis were to analyze the application mode of the universal adhesives (UA) and to give instructions for clinical procedures. The etching mode of UA on the bond strength to dentin and on the risk of retention, marginal discoloration, marginal adaptation and post-operative sensitivity (POS) was analyzed by two systematic reviews. Three in vitro studies were conducted: 1) evaporation mode of a UA on coronal dentin; 2) cementation approach on radicular dentin; 3) adhesion of metal brackets to enamel. Materials and methods: Two systematic review were conducted firstly, then in vitro study to investigate the evaporation mode in presence or not of pulpal pressure by means of μTBS, and the enzymatic activity using in situ zymography, at T0 and T6. The cementation of a fiber into radicular dentin with different resin-cements was studied, by push-out bond strength evaluation. Orthodontic brackets were cemented according to 4 adhesive protocols and shear bond strength test was conducted. Two adhesive removal techniques were evaluated, and spectrophotometry was used. Results: The probability of POS occurrence was less in SE. SEE approach seems to perform better than SE. Air-drying resulted in higher μTBS. Suction-evaporation, aging and ER mode increased MMPs activity. Differences in NL expression were present at T0 for fiber post study, and the aging produced an increase in marginal infiltration. Brackets cemented with new universal cement with previous etchant application showed good μTBS values. Conclusion: SEE performed better than SE and TE with UA in terms of uTBS. Evaporating with air-drying is better for UA in terms of uTBS and enzymatic activity. Aging and choice of resin cement for cementation of fiber posts influenced the PBS. Brackets cementation with a new resin- cement seems to offer the highest bond strength and leaves more cement remnants after the bracket removal.
Resumo:
Aims: This thesis aimed to investigate the influence of different collagen cross-linkers, as separate primers or contained within desensitizing agents, on the longevity of dental restorations and on the dentinal enzymatic activity immediately, or after aging in vitro. Methods: A series of studies was conducted using several different cross-linking molecules and several adhesive systems. Four studies investigated the longevity of the hybrid layer by means of microtensile bond strength test, and the enzymatic activity using gelatin and in situ zymography, immediately or after 1 year of aging in the artificial saliva. The first study tested samples bonded with or without a cross-linking agent, that were previously aged for 5 years. The degradation of the hybrid layer was observed using transmission electron microscopy, the enzymatic activity in the hybrid layer using in situ zymography. Raman spectroscopy was used to investigate whether the active substance was still within the hybrid layer after 5 years. Results: The results of the studies showed that collagen cross-linkers were efficient in preserving bond strength after aging in vitro when used as separate primers on demineralized or partially demineralized dentin. In the cases when the cross-linker was utilized on mineralized dentin, bond strength results were higher than in the control groups immediately and after aging, however, no difference in enzymatic activity was detected after aging. Conclusions: The tested cross-linker molecules used as separate primers in etch-and-rinse and self-etch adhesives seem to be clinically applicable, since the procedure is not overly time-consuming and seems to preserve the hybrid layer over time. As for the cross-linkers contained in the desensitizing agent, when utilized before the adhesive procedures, it has shown to increase the bond strength of self-etch adhesives, but further studies are needed to better understand its effect on the enzymatic activity and crosslinking effects on mineralized dentin.
Resumo:
Objective: Lithium-silicate (LiSi) ceramic is nowadays widely used in dentistry. However, for the longevity of LiSi indirect restorations, it is important to pretreat the material and the dental substrate adequately. However, is not certain how the simplification of the manufacturing and conditioning procedures influences the bonding performances of LiSi ceramic restorations. Accordingly, the aims of this thesis were to investigate the effect of: 1) different LiSi ceramic surface decontamination procedures on the shear bond strength (SBS) to resin composite; 2) different types of lithium-disilicate (LiDi) (pressed vs CAD-CAM) on SBS to resin composite; 3) an experimental metal salt-based zirconium oxynitrate etchant [ZrO(NO3)2] on bonding performances to dentin. Materials and Methods: SBS test was used to investigate the influence of different cleaning protocols applied, or different processing techniques (CAD or PRESS) on the bond strength to composite resin. The third study tackled the interface between restorative materials and dentin, and investigated the microtensile bond strength test (µTBS), nanoleakage expression analysis (NL), gelatin zymography and in situ zymography of dentin conditioned with an experimental metal salt-based zirconium oxynitrate etchant [ZrO(NO3)2]. Results: MEP showed comparable bond strength to the double HP etching and higher compared to other groups. BS of press LiSi to composite was higher than that of CAD/CAM LiSi. ZON pretreatment increased bond strength to dentin when used with a universal adhesive, and inhibited dentinal endogenous enzymes. Conclusions: While simplification of the LiSi conditioning and cleaning procedures seems to yield bond strength comparable to the traditional procedures, it could be recommended in the clinical practice. However, pressed LiSi still seems to perform better in terms of bond strength compared to the CAD/CAM LiSi. Further, the novel ZON etchant seems to perform better compared to the traditional phosphoric dentin etching.