15 resultados para Self-adapting applications
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The wide use of e-technologies represents a great opportunity for underserved segments of the population, especially with the aim of reintegrating excluded individuals back into society through education. This is particularly true for people with different types of disabilities who may have difficulties while attending traditional on-site learning programs that are typically based on printed learning resources. The creation and provision of accessible e-learning contents may therefore become a key factor in enabling people with different access needs to enjoy quality learning experiences and services. Another e-learning challenge is represented by m-learning (which stands for mobile learning), which is emerging as a consequence of mobile terminals diffusion and provides the opportunity to browse didactical materials everywhere, outside places that are traditionally devoted to education. Both such situations share the need to access materials in limited conditions and collide with the growing use of rich media in didactical contents, which are designed to be enjoyed without any restriction. Nowadays, Web-based teaching makes great use of multimedia technologies, ranging from Flash animations to prerecorded video-lectures. Rich media in e-learning can offer significant potential in enhancing the learning environment, through helping to increase access to education, enhance the learning experience and support multiple learning styles. Moreover, they can often be used to improve the structure of Web-based courses. These highly variegated and structured contents may significantly improve the quality and the effectiveness of educational activities for learners. For example, rich media contents allow us to describe complex concepts and process flows. Audio and video elements may be utilized to add a “human touch” to distance-learning courses. Finally, real lectures may be recorded and distributed to integrate or enrich on line materials. A confirmation of the advantages of these approaches can be seen in the exponential growth of video-lecture availability on the net, due to the ease of recording and delivering activities which take place in a traditional classroom. Furthermore, the wide use of assistive technologies for learners with disabilities injects new life into e-learning systems. E-learning allows distance and flexible educational activities, thus helping disabled learners to access resources which would otherwise present significant barriers for them. For instance, students with visual impairments have difficulties in reading traditional visual materials, deaf learners have trouble in following traditional (spoken) lectures, people with motion disabilities have problems in attending on-site programs. As already mentioned, the use of wireless technologies and pervasive computing may really enhance the educational learner experience by offering mobile e-learning services that can be accessed by handheld devices. This new paradigm of educational content distribution maximizes the benefits for learners since it enables users to overcome constraints imposed by the surrounding environment. While certainly helpful for users without disabilities, we believe that the use of newmobile technologies may also become a fundamental tool for impaired learners, since it frees them from sitting in front of a PC. In this way, educational activities can be enjoyed by all the users, without hindrance, thus increasing the social inclusion of non-typical learners. While the provision of fully accessible and portable video-lectures may be extremely useful for students, it is widely recognized that structuring and managing rich media contents for mobile learning services are complex and expensive tasks. Indeed, major difficulties originate from the basic need to provide a textual equivalent for each media resource composing a rich media Learning Object (LO). Moreover, tests need to be carried out to establish whether a given LO is fully accessible to all kinds of learners. Unfortunately, both these tasks are truly time-consuming processes, depending on the type of contents the teacher is writing and on the authoring tool he/she is using. Due to these difficulties, online LOs are often distributed as partially accessible or totally inaccessible content. Bearing this in mind, this thesis aims to discuss the key issues of a system we have developed to deliver accessible, customized or nomadic learning experiences to learners with different access needs and skills. To reduce the risk of excluding users with particular access capabilities, our system exploits Learning Objects (LOs) which are dynamically adapted and transcoded based on the specific needs of non-typical users and on the barriers that they can encounter in the environment. The basic idea is to dynamically adapt contents, by selecting them from a set of media resources packaged in SCORM-compliant LOs and stored in a self-adapting format. The system schedules and orchestrates a set of transcoding processes based on specific learner needs, so as to produce a customized LO that can be fully enjoyed by any (impaired or mobile) student.
Resumo:
Biohybrid derivatives of π-conjugated materials are emerging as powerful tools to study biological events through the (opto)electronic variations of the π-conjugated moieties, as well as to direct and govern the self-assembly properties of the organic materials through the organization principles of the bio component. So far, very few examples of thiophene-based biohybrids have been reported. The aim of this Ph. D thesis has been the development of oligothiophene-oligonucleotide hybrid derivatives as tools, on one side, to detect DNA hybridisation events and, on the other, as model compounds to investigate thiophene-nucleobase interactions in the solid state. To obtain oligothiophene bioconjugates with the required high level of purity, we first developed new synthetic ecofriendly protocols for the synthesis of thiophene oligomers. Our innovative heterogeneous Suzuki coupling methodology, carried out in EtOH/water or isopropanol under microwave irradiation, allowed us to obtain alkyl substituted oligothiophenes and thiophene based co-oligomers in high yields and very short reaction times, free from residual metals and with improved film forming properties. These methodologies were subsequently applied in the synthesis of oligothiophene-oligonucleotide conjugates. Oligothiophene-5-labeled deoxyuridines were synthesized and incorporated into 19-meric oligonucletide sequences. We showed that the oligothiophene-labeled oligonucletide sequences obtained can be used as probes to detect a single nucleotide polymorphism (SNP) in complementary DNA target sequences. In fact, all the probes showed marked variations in emission intensity upon hybridization with a complementary target sequence. The observed variations in emitted light were comparable or even superior to those reported in similar studies, showing that the biohybrids can potentially be useful to develop biosensors for the detection of DNA mismatches. Finally, water-soluble, photoluminescent and electroactive dinucleotide-hybrid derivatives of quaterthiophene and quinquethiophene were synthesized. By means of a combination of spectroscopy and microscopy techniques, electrical characterizations, microfluidic measurements and theoretical calculations, we were able to demonstrate that the self-assembly modalities of the biohybrids in thin films are driven by the interplay of intra and intermolecular interactions in which the π-stacking between the oligothiophene and nucleotide bases plays a major role.
Resumo:
Several activities were conducted during my PhD activity. For the NEMO experiment a collaboration between the INFN/University groups of Catania and Bologna led to the development and production of a mixed signal acquisition board for the Nemo Km3 telescope. The research concerned the feasibility study for a different acquisition technique quite far from that adopted in the NEMO Phase 1 telescope. The DAQ board that we realized exploits the LIRA06 front-end chip for the analog acquisition of anodic an dynodic sources of a PMT (Photo-Multiplier Tube). The low-power analog acquisition allows to sample contemporaneously multiple channels of the PMT at different gain factors in order to increase the signal response linearity over a wider dynamic range. Also the auto triggering and self-event-classification features help to improve the acquisition performance and the knowledge on the neutrino event. A fully functional interface towards the first level data concentrator, the Floor Control Module, has been integrated as well on the board, and a specific firmware has been realized to comply with the present communication protocols. This stage of the project foresees the use of an FPGA, a high speed configurable device, to provide the board with a flexible digital logic control core. After the validation of the whole front-end architecture this feature would be probably integrated in a common mixed-signal ASIC (Application Specific Integrated Circuit). The volatile nature of the configuration memory of the FPGA implied the integration of a flash ISP (In System Programming) memory and a smart architecture for a safe remote reconfiguration of it. All the integrated features of the board have been tested. At the Catania laboratory the behavior of the LIRA chip has been investigated in the digital environment of the DAQ board and we succeeded in driving the acquisition with the FPGA. The PMT pulses generated with an arbitrary waveform generator were correctly triggered and acquired by the analog chip, and successively they were digitized by the on board ADC under the supervision of the FPGA. For the communication towards the data concentrator a test bench has been realized in Bologna where, thanks to a lending of the Roma University and INFN, a full readout chain equivalent to that present in the NEMO phase-1 was installed. These tests showed a good behavior of the digital electronic that was able to receive and to execute command imparted by the PC console and to answer back with a reply. The remotely configurable logic behaved well too and demonstrated, at least in principle, the validity of this technique. A new prototype board is now under development at the Catania laboratory as an evolution of the one described above. This board is going to be deployed within the NEMO Phase-2 tower in one of its floors dedicated to new front-end proposals. This board will integrate a new analog acquisition chip called SAS (Smart Auto-triggering Sampler) introducing thus a new analog front-end but inheriting most of the digital logic present in the current DAQ board discussed in this thesis. For what concern the activity on high-resolution vertex detectors, I worked within the SLIM5 collaboration for the characterization of a MAPS (Monolithic Active Pixel Sensor) device called APSEL-4D. The mentioned chip is a matrix of 4096 active pixel sensors with deep N-well implantations meant for charge collection and to shield the analog electronics from digital noise. The chip integrates the full-custom sensors matrix and the sparsifification/readout logic realized with standard-cells in STM CMOS technology 130 nm. For the chip characterization a test-beam has been set up on the 12 GeV PS (Proton Synchrotron) line facility at CERN of Geneva (CH). The collaboration prepared a silicon strip telescope and a DAQ system (hardware and software) for data acquisition and control of the telescope that allowed to store about 90 million events in 7 equivalent days of live-time of the beam. My activities concerned basically the realization of a firmware interface towards and from the MAPS chip in order to integrate it on the general DAQ system. Thereafter I worked on the DAQ software to implement on it a proper Slow Control interface of the APSEL4D. Several APSEL4D chips with different thinning have been tested during the test beam. Those with 100 and 300 um presented an overall efficiency of about 90% imparting a threshold of 450 electrons. The test-beam allowed to estimate also the resolution of the pixel sensor providing good results consistent with the pitch/sqrt(12) formula. The MAPS intrinsic resolution has been extracted from the width of the residual plot taking into account the multiple scattering effect.
Resumo:
The theory of the 3D multipole probability tomography method (3D GPT) to image source poles, dipoles, quadrupoles and octopoles, of a geophysical vector or scalar field dataset is developed. A geophysical dataset is assumed to be the response of an aggregation of poles, dipoles, quadrupoles and octopoles. These physical sources are used to reconstruct without a priori assumptions the most probable position and shape of the true geophysical buried sources, by determining the location of their centres and critical points of their boundaries, as corners, wedges and vertices. This theory, then, is adapted to the geoelectrical, gravity and self potential methods. A few synthetic examples using simple geometries and three field examples are discussed in order to demonstrate the notably enhanced resolution power of the new approach. At first, the application to a field example related to a dipole–dipole geoelectrical survey carried out in the archaeological park of Pompei is presented. The survey was finalised to recognize remains of the ancient Roman urban network including roads, squares and buildings, which were buried under the thick pyroclastic cover fallen during the 79 AD Vesuvius eruption. The revealed anomaly structures are ascribed to wellpreserved remnants of some aligned walls of Roman edifices, buried and partially destroyed by the 79 AD Vesuvius pyroclastic fall. Then, a field example related to a gravity survey carried out in the volcanic area of Mount Etna (Sicily, Italy) is presented, aimed at imaging as accurately as possible the differential mass density structure within the first few km of depth inside the volcanic apparatus. An assemblage of vertical prismatic blocks appears to be the most probable gravity model of the Etna apparatus within the first 5 km of depth below sea level. Finally, an experimental SP dataset collected in the Mt. Somma-Vesuvius volcanic district (Naples, Italy) is elaborated in order to define location and shape of the sources of two SP anomalies of opposite sign detected in the northwestern sector of the surveyed area. The modelled sources are interpreted as the polarization state induced by an intense hydrothermal convective flow mechanism within the volcanic apparatus, from the free surface down to about 3 km of depth b.s.l..
Resumo:
The common thread of this thesis is the will of investigating properties and behavior of assemblies. Groups of objects display peculiar properties, which can be very far from the simple sum of respective components’ properties. This is truer, the smaller is inter-objects distance, i.e. the higher is their density, and the smaller is the container size. “Confinement” is in fact a key concept in many topics explored and here reported. It can be conceived as a spatial limitation, that yet gives origin to unexpected processes and phenomena based on inter-objects communication. Such phenomena eventually result in “non-linear properties”, responsible for the low predictability of large assemblies. Chapter 1 provides two insights on surface chemistry, namely (i) on a supramolecular assembly based on orthogonal forces, and (ii) on selective and sensitive fluorescent sensing in thin polymeric film. In chapters 2 to 4 confinement of molecules plays a major role. Most of the work focuses on FRET within core-shell nanoparticles, investigated both through a simulation model and through experiments. Exciting results of great applicative interest are drawn, such as a method of tuning emission wavelength at constant excitation, and a way of overcoming self-quenching processes by setting up a competitive deactivation channel. We envisage applications of these materials as labels for multiplexing analysis, and in all fields of fluorescence imaging, where brightness coupled with biocompatibility and water solubility is required. Adducts of nanoparticles and molecular photoswitches are investigated in the context of superresolution techniques for fluorescence microscopy. In chapter 5 a method is proposed to prepare a library of functionalized Pluronic F127, which gives access to a twofold “smart” nanomaterial, namely both (i)luminescent and (ii)surface-functionalized SCSSNPs. Focus shifts in chapter 6 to confinement effects in an upper size scale. Moving from nanometers to micrometers, we investigate the interplay between microparticles flowing in microchannels where a constriction affects at very long ranges structure and dynamics of the colloidal paste.
Resumo:
Thiophene oligomers (OTs) and polymers (PTs) are currently attracting remarkable attention as organic materials showing semiconducting, fluorescent, nonlinear optical and liquid crystalline properties. All these properties can be fine-tuned through minor structural modifications. As a consequence, thiophene oligomers and polymers are among the most investigated compounds for applications in organic electronics, optoelectronics and thin film devices such as field effect transistors (FETs), light emitting diodes (LEDs) and photovoltaic devices (PVDs). Our research aims to explore the self-assembly features and the optical, electrical and photovoltaic properties of a class of thiophene based materials so far scarcely investigated, namely that of oligo- and polythiophenes head-to-head substituted with alkyl or S-alkyl chains. In particular, we synthesized these compounds in short reaction times, high yields, high purity and environmentally friendly procedures taking advantage of ultrasound (US) and microwave (MW) enabling technologies in Suzuki-Miyaura cross-couplings.
Resumo:
The aim of this thesis was to design, synthesize and develop a nanoparticle based system to be used as a chemosensor or as a label in bioanalytical applications. A versatile fluorescent functionalizable nanoarchitecture has been effectively produced based on the hydrolysis and condensation of TEOS in direct micelles of Pluronic® F 127, obtaining highly monodisperse silica - core / PEG - shell nanoparticles with a diameter of about 20 nm. Surface functionalized nanoparticles have been obtained in a one-pot procedure by chemical modification of the hydroxyl terminal groups of the surfactant. To make them fluorescent, a whole library of triethoxysilane fluorophores (mainly BODIPY based), encompassing the whole visible spectrum has been synthesized: this derivatization allows a high degree of doping, but the close proximity of the molecules inside the silica matrix leads to the development of self - quenching processes at high doping levels, with the concomitant fall of the fluorescence signal intensity. In order to bypass this parasite phenomenon, multichromophoric systems have been prepared, where highly efficient FRET processes occur, showing that this energy pathway is faster than self - quenching, recovering the fluorescence signal. The FRET efficiency remains very high even four dye nanoparticles, increasing the pseudo Stokes shift of the system, attractive feature for multiplexing analysis. These optimized nanoparticles have been successfully exploited in molecular imaging applications such as in vitro, in vivo and ex vivo imaging, proving themselves superior to conventional molecular fluorophores as signaling units.
Resumo:
Graphene, that is a monolayer of carbon atoms arranged in a honeycomb lattice, has been isolated only recently from graphite. This material shows very attractive physical properties, like superior carrier mobility, current carrying capability and thermal conductivity. In consideration of that, graphene has been the object of large investigation as a promising candidate to be used in nanometer-scale devices for electronic applications. In this work, graphene nanoribbons (GNRs), that are narrow strips of graphene, for which a band-gap is induced by the quantum confinement of carriers in the transverse direction, have been studied. As experimental GNR-FETs are still far from being ideal, mainly due to the large width and edge roughness, an accurate description of the physical phenomena occurring in these devices is required to have valuable predictions about the performance of these novel structures. A code has been developed to this purpose and used to investigate the performance of 1 to 15-nm wide GNR-FETs. Due to the importance of an accurate description of the quantum effects in the operation of graphene devices, a full-quantum transport model has been adopted: the electron dynamics has been described by a tight-binding (TB) Hamiltonian model and transport has been solved within the formalism of the non-equilibrium Green's functions (NEGF). Both ballistic and dissipative transport are considered. The inclusion of the electron-phonon interaction has been taken into account in the self-consistent Born approximation. In consideration of their different energy band-gap, narrow GNRs are expected to be suitable for logic applications, while wider ones could be promising candidates as channel material for radio-frequency applications.
Resumo:
Semiconductors technologies are rapidly evolving driven by the need for higher performance demanded by applications. Thanks to the numerous advantages that it offers, gallium nitride (GaN) is quickly becoming the technology of reference in the field of power amplification at high frequency. The RF power density of AlGaN/GaN HEMTs (High Electron Mobility Transistor) is an order of magnitude higher than the one of gallium arsenide (GaAs) transistors. The first demonstration of GaN devices dates back only to 1993. Although over the past few years some commercial products have started to be available, the development of a new technology is a long process. The technology of AlGaN/GaN HEMT is not yet fully mature, some issues related to dispersive phenomena and also to reliability are still present. Dispersive phenomena, also referred as long-term memory effects, have a detrimental impact on RF performances and are due both to the presence of traps in the device structure and to self-heating effects. A better understanding of these problems is needed to further improve the obtainable performances. Moreover, new models of devices that take into consideration these effects are necessary for accurate circuit designs. New characterization techniques are thus needed both to gain insight into these problems and improve the technology and to develop more accurate device models. This thesis presents the research conducted on the development of new charac- terization and modelling methodologies for GaN-based devices and on the use of this technology for high frequency power amplifier applications.
Resumo:
Organic printed electronics is attracting an ever-growing interest in the last decades because of its impressive breakthroughs concerning the chemical design of π-conjugated materials and their processing. This has an impact on novel applications, such as flexible-large-area displays, low- cost printable circuits, plastic solar cells and lab-on-a-chip devices. The organic field-effect transistor (OFET) relies on a thin film of organic semiconductor that bridges source and drain electrodes. Since its first discovery in the 80s, intensive research activities were deployed in order to control the chemico-physical properties of these electronic devices and consequently their charge. Self-assembled monolayers (SAMs) are a versatile tool for tuning the properties of metallic, semi-conducting, and insulating surfaces. Within this context, OFETs represent reliable instruments for measuring the electrical properties of the SAMs in a Metal/SAM/OS junction. Our experimental approach, named Charge Injection Organic-Gauge (CIOG), uses OTFT in a charge-injection controlled regime. The CIOG sensitivity has been extensively demonstrated on different homologous self-assembling molecules that differ in either chain length or in anchor/terminal group. One of the latest applications of organic electronics is the so-called “bio-electronics” that makes use of electronic devices to encompass interests of the medical science, such as biosensors, biotransducers etc… As a result, thee second part of this thesis deals with the realization of an electronic transducer based on an Organic Field-Effect Transistor operating in aqueous media. Here, the conventional bottom gate/bottom contact configuration is replaced by top gate architecture with the electrolyte that ensures electrical contact between the top gold electrode and the semiconductor layer. This configuration is named Electrolyte-Gated Field-Effect Transistor (EGOFET). The functionalization of the top electrode is the sensing core of the device allowing the detection of dopamine as well as of protein biomarkers with ultra-low sensitivity.
Resumo:
Biological systems are complex and highly organized architectures governed by noncovalent interactions, which are responsible for molecular recognition, self-assembly, self-organization, adaptation and evolution processes. These systems provided the inspiration for the development of supramolecular chemistry, that aimed at the design of artificial multicomponent molecular assemblies, namely supramolecular systems, properly designed to perform different operations: each constituting unit performs a single act, whereas the entire supramolecular system is able to execute a more complex function, resulting from the cooperation of the constituting components. Supramolecular chemistry deals with the development of molecular systems able to mimic naturally occurring events, for example complexation and self-assembly through the establishment of noncovalent interactions. Moreover, the application of external stimuli, such as light, allows to perform these operations in a time- and space-controlled manner. These systems can interact with biological systems and, thus, can be applied for bioimaging, therapeutic and drug delivery purposes. In this work the study of biocompatible supramolecular species able to interact with light is presented. The first part deals with the photophysical, photochemical and electrochemical characterization of water-soluble blue emitting triazoloquinolinium and triazolopyridinium salts. Moreover, their interaction with DNA has been explored, in the perspective of developing water-soluble systems for bioimaging applications. In the second part, the effect exerted by the presence of azobenzene-bearing supramolecular species in liposomes, inserted both in the phospholipid bilayer and in the in the aqueous core of vesicles has been studied, in order to develop systems able to deliver small molecules and ions in a photocontrolled manner. Moreover, the versatility of azobenzene and its broad range of applications have been highlighted, since conjugated oligoazobenzene derivatives proved not to be adequate to be inserted in the phospholipid bilayer of liposomes, but their electrochemical properties made them interesting candidates as electron acceptor materials for photovoltaic applications.
Resumo:
Monolithic materials cannot always satisfy the demands of today’s advanced requirements. Only by combining several materials at different length-scales, as nature does, the requested performances can be met. Polymer nanocomposites are intended to overcome the common drawbacks of pristine polymers, with a multidisciplinary collaboration of material science with chemistry, engineering, and nanotechnology. These materials are an active combination of polymers and nanomaterials, where at least one phase lies in the nanometer range. By mimicking nature’s materials is possible to develop new nanocomposites for structural applications demanding combinations of strength and toughness. In this perspective, nanofibers obtained by electrospinning have been increasingly adopted in the last decade to improve the fracture toughness of Fiber Reinforced Plastic (FRP) laminates. Although nanofibers have already found applications in various fields, their widespread introduction in the industrial context is still a long way to go. This thesis aims to develop methodologies and models able to predict the behaviour of nanofibrous-reinforced polymers, paving the way for their practical engineering applications. It consists of two main parts. The first one investigates the mechanisms that act at the nanoscale, systematically evaluating the mechanical properties of both the nanofibrous reinforcement phase (Chapter 1) and hosting polymeric matrix (Chapter 2). The second part deals with the implementation of different types of nanofibers for novel pioneering applications, trying to combine the well-known fracture toughness enhancement in composite laminates with improving other mechanical properties or including novel functionalities. Chapter 3 reports the development of novel adhesive carriers made of nylon 6,6 nanofibrous mats to increase the fracture toughness of epoxy-bonded joints. In Chapter 4, recently developed rubbery nanofibers are used to enhance the damping properties of unidirectional carbon fiber laminates. Lastly, in Chapter 5, a novel self-sensing composite laminate capable of detecting impacts on its surface using PVDF-TrFE piezoelectric nanofibers is presented.
Resumo:
The convergence between the recent developments in sensing technologies, data science, signal processing and advanced modelling has fostered a new paradigm to the Structural Health Monitoring (SHM) of engineered structures, which is the one based on intelligent sensors, i.e., embedded devices capable of stream processing data and/or performing structural inference in a self-contained and near-sensor manner. To efficiently exploit these intelligent sensor units for full-scale structural assessment, a joint effort is required to deal with instrumental aspects related to signal acquisition, conditioning and digitalization, and those pertaining to data management, data analytics and information sharing. In this framework, the main goal of this Thesis is to tackle the multi-faceted nature of the monitoring process, via a full-scale optimization of the hardware and software resources involved by the {SHM} system. The pursuit of this objective has required the investigation of both: i) transversal aspects common to multiple application domains at different abstraction levels (such as knowledge distillation, networking solutions, microsystem {HW} architectures), and ii) the specificities of the monitoring methodologies (vibrations, guided waves, acoustic emission monitoring). The key tools adopted in the proposed monitoring frameworks belong to the embedded signal processing field: namely, graph signal processing, compressed sensing, ARMA System Identification, digital data communication and TinyML.
Resumo:
A Plasma Focus device can confine in a small region a plasma generated during the pinch phase. When the plasma is in the pinch condition it creates an environment that produces several kinds of radiations. When the filling gas is nitrogen, a self-collimated backwardly emitted electron beam, slightly spread by the coulomb repulsion, can be considered one of the most interesting outputs. That beam can be converted into X-ray pulses able to transfer energy at an Ultra-High Dose-Rate (UH-DR), up to 1 Gy pulse-1, for clinical applications, research, or industrial purposes. The radiation fields have been studied with the PFMA-3 hosted at the University of Bologna, finding the radiation behavior at different operating conditions and working parameters for a proper tuning of this class of devices in clinical applications. The experimental outcomes have been compared with available analytical formalisms as benchmark and the scaling laws have been proposed. A set of Monte Carlo models have been built with direct and adjoint techniques for an accurate X-ray source characterization and for setting fast and reliable irradiation planning for patients. By coupling deterministic and Monte Carlo codes, a focusing lens for the charged particles has been designed for obtaining a beam suitable for applications as external radiotherapy or intra-operative radiation therapy. The radiobiological effectiveness of the UH PF DR, a FLASH source, has been evaluated by coupling different Monte Carlo codes estimating the overall level of DNA damage at the multi-cellular and tissue levels by considering the spatial variation effects as well as the radiation field characteristics. The numerical results have been correlated to the experimental outcomes. Finally, ambient dose measurements have been performed for tuning the numerical models and obtaining doses for radiation protection purposes. The PFMA-3 technology has been fully characterized toward clinical implementation and installation in a medical facility.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are a large class of π-conjugated organic molecules with fused aromatic rings, which can be considered as fragments of 2D-graphene and have been extensively studied for their unique optical and electronic properties. The aim of this study is to understand the complex electrochemical behaviour of planar, curved, and heteroatom doped polycyclic aromatic molecules, particularly focusing on the oxidative coupling of their radical cations and the electrochemically induced cyclodehydrogenation reactions. In the first part of this thesis, the class of PAHs and aromatic nanostructures are introduced, and the reactivity of electrogenerated species is discussed, focusing on the electrochemical approach for the synthesis of extended π-conjugated structures. Subsequently, the electrochemical properties and reactivity of electrogenerated radical ions of planar and curved polyaromatics are correlated to their structures. In the third chapter, electrochemical cyclodehydrogenation of hexaphenylbenzene is used to prepare self-assembled hexabenzocoronene, directly deposited on an interdigitated electrode, which was characterised as organic electrochemical transistor. In the fourth chapter, the electrochemical behaviour of a family of azapyrene derivatives has been carefully investigated together with the electrogenerated chemiluminescence (ECL), both by ion-annihilation and co-reactant methods. Two structural azapyrene isomers with different nitrogen positions are thoroughly discussed in terms of redox and ECL properties. Interestingly, the ECL of only one of them showed a double emission with excimer formation. A detailed mechanism is discussed for the ECL by co-reactant benzoyl peroxide, to rationalise the different ECL behaviours of the two isomers on the basis of their topologically modulated electronic properties. In conclusion, the different electrochemical behaviours of PAHs were shown, focussing on the chemical reactivity of the electrogenerated species and taking advantage of it for important processes spanning from unconventional synthesis methods for carbon nanostructures to the exploitation of self-assembled nanostructured systems in organic electronics, to novel organic emitters in ECL.