11 resultados para Selective Catalytic Reduction
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Levulinic Acid and its esters are polyfunctional molecules obtained by biomass conversion. The most investigated strategy for the valorization of LA is its hydrogenation towards fuel additives, solvents and other added-value bio-based chemicals and, in this context, heterogeneous and homogeneous catalysts are widely used. Most commonly, it is typically performed with molecular hydrogen (H2) in batch systems, with high H2 pressures and noble metal catalysts. Several works reported the batch liquid-phase hydrogenation of LA and its esters by heterogenous catalysts which contained support with Brønsted acidity in order to obtain valeric acid and its esters. Furthermore, bimetallic and monometallic systems composed by both a metal for hydrogen activation and a promoter were demonstrated to be suitable catalysts for reduction of carboxylic group. However, there were no studies in the literature reporting the hydrogenation of alkyl levulinates to 1-pentanol (1-PAO). Therefore, bimetallic and monometallic catalysts were tested for one-pot hydrogenation of methyl levulinate to 1-PAO. Re-based catalysts were investigated, this way proving the crucial role of the support for promoting the ring-opening of GVL and its consecutive reduction to valeric compounds. All the reactions were performed in neat without the need of any additional solvents. In these conditions, bimetallic Re-Ru-O/HZSM-5 afforded methyl valerate and valeric acid (VA) with a productivity of 512 mmol gmetal-1 h-1, one of the highest reported in literature to date. Rhenium can also promote the reduction of valeric acid/esters to PV through the formation of 1-pentanol and its efficient esterification/transesterification with the starting material. However, it was proved that Re-based catalysts may undergo leaching of active phase in presence of carboxylic acids, especially by working in neat with VA. Furthermore, the over-reduction of rhenium affects catalytic performance, suggesting not only that a pre-reduction step is unnecessary but also that it could be detrimental for catalyst’s activity.
Resumo:
Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive engines is inherently related to unsteady conditions. There are various operating conditions experienced by (diesel) engines that can be classified as transient. Besides the variation of the engine operating point, in terms of engine speed and torque, also the warm up phase can be considered as a transient condition. Chapter 2 has to do with this thermal transient condition; more precisely the main issue is the performance of a Selective Catalytic Reduction (SCR) system during cold start and warm up phases of the engine. The proposal of the underlying work is to investigate and identify optimal exhaust line heating strategies, to provide a fast activation of the catalytic reactions on SCR. Chapters 3 and 4 focus the attention on the dynamic behavior of the engine, when considering typical driving conditions. The common approach to dynamic optimization involves the solution of a single optimal-control problem. However, this approach requires the availability of models that are valid throughout the whole engine operating range and actuator ranges. In addition, the result of the optimization is meaningful only if the model is very accurate. Chapter 3 proposes a methodology to circumvent those demanding requirements: an iteration between transient measurements to refine a purpose-built model and a dynamic optimization which is constrained to the model validity region. Moreover all numerical methods required to implement this procedure are presented. Chapter 4 proposes an approach to derive a transient feedforward control system in an automated way. It relies on optimal control theory to solve a dynamic optimization problem for fast transients. From the optimal solutions, the relevant information is extracted and stored in maps spanned by the engine speed and the torque gradient.
Resumo:
This Ph.D. thesis concerns the synthesis of nanostructured Cu-containing materials to be used as electrode modifiers for the CO2 electroreduction in aqueous phase and the evaluation of their catalytic performances. Inspired by the fascinating concept of the artificial photosynthesis-oriented systems, several catalytic layers were electrochemically loaded on carbonaceous gas diffusion membranes, i.e., 3D structures that allow the design of eco-friendly materials for applications in green carbon recycling processes. In particular, early studies on Cu(I-II)-Cu(0) nanostructured materials were carried out to produce films on 4 cm2 sized supports by means of a fast and low-cost electrochemical procedure. Besides, through a screening of potentials, it was possible to find out a selective value for the CH3COOH production at -0.4 V vs RHE with a maximum productivity (1h reaction), ensured by the presence of the Cu+/Cu0 active redox couple (0.31 mmol gcat-1 h-1). On the basis of these results, further optimisations of the electrocatalyst chemical composition were carried out with the aim of (i) facilitating the interaction with CO2, (ii) increasing the dispersion of the catalytic active phase, and (iii) enhancing the CH3COOH productivity. To this aim, novel electrocatalysts based on layered double hydroxides (LDHs) were optimised, having as a final goal the formation of a new Cu2O-Cu0 based electrocatalyst derived from electrochemically achieved CuMgAl LDHs, subjected to calcination and reduction processes. The as-obtained electrocatalysts were tested for the selective production of CH3COOH and unprecedented results were obtained with the pristine CuMgAl LDH (2.0 mmol gcat-1 h-1). Additional characterisations of such an electrocatalyst have highlighted the possibility to achieve a ternary LDH in intimate contact with Cu2O-Cu0 species starting from the electrochemical deposition. The presence of these species, along with an alkaline environment on the electrode surface, were essential to preserve the selectivity towards the desired product, as confirmed by further operando studies.
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.
Resumo:
The electrocatalytic reduction of CO2 (CO2RR) is a captivating strategy for the conversion of CO2 into fuels, to realize a carbon neutral circular economy. In the recent years, research has focused on the development of new materials and technology capable of capturing and converting CO2 into useful products. The main problem of CO2RR is given by its poor selectivity, which can lead to the formation of numerous reaction products, to the detriment of efficiencies. For this reason, the design of new electrocatalysts that selectively and efficiently reduce CO2 is a fundamental step for the future exploitation of this technology. Here we present a new class of electrocatalysts, designed with a modular approach, namely, deriving from the combination of different building blocks in a single nanostructure. With this approach it is possible to obtain materials with an innovative design and new functionalities, where the interconnections between the various components are essential to obtain a highly selective and efficient reduction of CO2, thus opening up new possibilities in the design of optimized electrocatalytic materials. By combining the unique physic-chemical properties of carbon nanostructures (CNS) with nanocrystalline metal oxides (MO), we were able to modulate the selectivity of CO2RR, with the production of formic acid and syngas at low overpotentials. The CNS have not only the task of stabilizing the MO nanoparticles, but the creation of an optimal interface between two nanostructures is able to improve the catalytic activity of the active phase of the material. While the presence of oxygen atoms in the MO creates defects that accelerate the reaction kinetics and stabilize certain reaction intermediates, selecting the reaction pathway. Finally, a part was dedicated to the study of the experimental parameters influencing the CO2RR, with the aim of improving the experimental setup in order to obtain commercial catalytic performances.
Resumo:
Nowadays, it is clear that the target of creating a sustainable future for the next generations requires to re-think the industrial application of chemistry. It is also evident that more sustainable chemical processes may be economically convenient, in comparison with the conventional ones, because fewer by-products means lower costs for raw materials, for separation and for disposal treatments; but also it implies an increase of productivity and, as a consequence, smaller reactors can be used. In addition, an indirect gain could derive from the better public image of the company, marketing sustainable products or processes. In this context, oxidation reactions play a major role, being the tool for the production of huge quantities of chemical intermediates and specialties. Potentially, the impact of these productions on the environment could have been much worse than it is, if a continuous efforts hadn’t been spent to improve the technologies employed. Substantial technological innovations have driven the development of new catalytic systems, the improvement of reactions and process technologies, contributing to move the chemical industry in the direction of a more sustainable and ecological approach. The roadmap for the application of these concepts includes new synthetic strategies, alternative reactants, catalysts heterogenisation and innovative reactor configurations and process design. Actually, in order to implement all these ideas into real projects, the development of more efficient reactions is one primary target. Yield, selectivity and space-time yield are the right metrics for evaluating the reaction efficiency. In the case of catalytic selective oxidation, the control of selectivity has always been the principal issue, because the formation of total oxidation products (carbon oxides) is thermodynamically more favoured than the formation of the desired, partially oxidized compound. As a matter of fact, only in few oxidation reactions a total, or close to total, conversion is achieved, and usually the selectivity is limited by the formation of by-products or co-products, that often implies unfavourable process economics; moreover, sometimes the cost of the oxidant further penalizes the process. During my PhD work, I have investigated four reactions that are emblematic of the new approaches used in the chemical industry. In the Part A of my thesis, a new process aimed at a more sustainable production of menadione (vitamin K3) is described. The “greener” approach includes the use of hydrogen peroxide in place of chromate (from a stoichiometric oxidation to a catalytic oxidation), also avoiding the production of dangerous waste. Moreover, I have studied the possibility of using an heterogeneous catalytic system, able to efficiently activate hydrogen peroxide. Indeed, the overall process would be carried out in two different steps: the first is the methylation of 1-naphthol with methanol to yield 2-methyl-1-naphthol, the second one is the oxidation of the latter compound to menadione. The catalyst for this latter step, the reaction object of my investigation, consists of Nb2O5-SiO2 prepared with the sol-gel technique. The catalytic tests were first carried out under conditions that simulate the in-situ generation of hydrogen peroxide, that means using a low concentration of the oxidant. Then, experiments were carried out using higher hydrogen peroxide concentration. The study of the reaction mechanism was fundamental to get indications about the best operative conditions, and improve the selectivity to menadione. In the Part B, I explored the direct oxidation of benzene to phenol with hydrogen peroxide. The industrial process for phenol is the oxidation of cumene with oxygen, that also co-produces acetone. This can be considered a case of how economics could drive the sustainability issue; in fact, the new process allowing to obtain directly phenol, besides avoiding the co-production of acetone (a burden for phenol, because the market requirements for the two products are quite different), might be economically convenient with respect to the conventional process, if a high selectivity to phenol were obtained. Titanium silicalite-1 (TS-1) is the catalyst chosen for this reaction. Comparing the reactivity results obtained with some TS-1 samples having different chemical-physical properties, and analyzing in detail the effect of the more important reaction parameters, we could formulate some hypothesis concerning the reaction network and mechanism. Part C of my thesis deals with the hydroxylation of phenol to hydroquinone and catechol. This reaction is already industrially applied but, for economical reason, an improvement of the selectivity to the para di-hydroxilated compound and a decrease of the selectivity to the ortho isomer would be desirable. Also in this case, the catalyst used was the TS-1. The aim of my research was to find out a method to control the selectivity ratio between the two isomers, and finally to make the industrial process more flexible, in order to adapt the process performance in function of fluctuations of the market requirements. The reaction was carried out in both a batch stirred reactor and in a re-circulating fixed-bed reactor. In the first system, the effect of various reaction parameters on catalytic behaviour was investigated: type of solvent or co-solvent, and particle size. With the second reactor type, I investigated the possibility to use a continuous system, and the catalyst shaped in extrudates (instead of powder), in order to avoid the catalyst filtration step. Finally, part D deals with the study of a new process for the valorisation of glycerol, by means of transformation into valuable chemicals. This molecule is nowadays produced in big amount, being a co-product in biodiesel synthesis; therefore, it is considered a raw material from renewable resources (a bio-platform molecule). Initially, we tested the oxidation of glycerol in the liquid-phase, with hydrogen peroxide and TS-1. However, results achieved were not satisfactory. Then we investigated the gas-phase transformation of glycerol into acrylic acid, with the intermediate formation of acrolein; the latter can be obtained by dehydration of glycerol, and then can be oxidized into acrylic acid. Actually, the oxidation step from acrolein to acrylic acid is already optimized at an industrial level; therefore, we decided to investigate in depth the first step of the process. I studied the reactivity of heterogeneous acid catalysts based on sulphated zirconia. Tests were carried out both in aerobic and anaerobic conditions, in order to investigate the effect of oxygen on the catalyst deactivation rate (one main problem usually met in glycerol dehydration). Finally, I studied the reactivity of bifunctional systems, made of Keggin-type polyoxometalates, either alone or supported over sulphated zirconia, in this way combining the acid functionality (necessary for the dehydrative step) with the redox one (necessary for the oxidative step). In conclusion, during my PhD work I investigated reactions that apply the “green chemistry” rules and strategies; in particular, I studied new greener approaches for the synthesis of chemicals (Part A and Part B), the optimisation of reaction parameters to make the oxidation process more flexible (Part C), and the use of a bioplatform molecule for the synthesis of a chemical intermediate (Part D).
Resumo:
This work deals with the oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using metal supported catalysts. Catalysts were prepared from the immobilisation of preformed monometallic (Au, Pd) and bimetallic (AuCu, AuPd) nanoparticles on commercial oxides (TiO2, CeO2). Au-TiO2 catalyst was found to be very active for HMF oxidation; however, this system deactivated very fast. For this reason, we prepared bimetallic gold-copper nanoparticles and an increase in the catalytic activity was observed together with an increase in catalyst stability. In order to optimise the interaction of the metal active phase with the support, Au and AuCu nanoparticles were supported onto CeO2. Au-CeO2 catalyst was found to be more active than the bimetallic one, leading to the conclusion that in this case the most important feature is the interaction between gold and the support. Catalyst pre-treatments (calcination and washing) were carried out to maximise the contact between the metal and the oxide and an increase in the FDCA production could be observed. The presence of ceria defective sites was crucial for FDCA formation. Mesoporous cerium oxide was synthesised with the hard template method and was used as support for Au nanoparticles to promote the catalytic activity. In order to study the role of active phase in HMF oxidation, PdAu nanoparticles were supported onto TiO2. Au and Pd monometallic catalysts were very active in the formation of HMFCA (5-hydroxymethyl-2-furan carboxylic acid), but Pd was not able to convert it, leading to a low FDCA yield. The calcination of PdAu catalysts led to Pd segregation on the particles surface, which changed the reaction pathway and included an important contribution of the Cannizzaro reaction. PVP protected PdAu nanoparticles, synthesised with different morphologies (core-shell and alloyed structure), confirmed the presence of a different reaction mechanism when the metal surface composition changes.
Resumo:
The research activity was focused on the transformation of methyl propionate (MP) into methyl methacrylate (MMA), avoiding the use of formaldehyde (FAL) thanks to a one-pot strategy involving in situ methanol (MeOH) dehydrogenation over the same catalytic bed were the hydroxy-methylation/dehydration of MP with FAL occurs. The relevance of such research line is related to the availability of cheap renewable bio-glycerol from biodiesel production, from which MP can be obtained via a series of simple catalytic reactions. Moreover, the conventional MMA synthesis (Lucite process) suffers from safety issues related to the direct use of carcinogenic FAL and depends on non-renewable MP. During preliminary studies, ketonization of carboxylic acids and esters has been recognized as a detrimental reaction which hinders the selective synthesis of MMA at low temperature, together with H-transfer hydrogenation with FAL or MeOH as the H-donor at higher temperatures. Therefore, ketonization of propionic acid (PA) and MP was investigated over several catalysts (metal oxides and metal phosphates), to obtain a better understanding of the structure-activity relationship governing the reaction and to design a catalyst for MMA synthesis capable to promote the desired reaction while minimizing ketonization and H-transfer. However, ketonization possesses scientific and industrial value itself and represents a strategy for the upgrade of bio oils from fast pyrolysis of lignocellulosic materials, a robust and versatile technology capable to transform the most abundant biomass into liquid biofuels. The catalysts screening showed that ZrO2 and La2O3 are the best catalysts, while MgO possesses low ketonization activity, but still, H-transfer parasitic hydrogenation of MMA reduces its yield over all catalysts. Such study resulted in the design of Mg/Ga mixed oxides that showed enhanced dehydrogenating activity towards MeOH at low temperatures. It was found that the introduction of Ga not only minimize ketonization, but also modulates catalyst basicity reducing H-transfer hydrogenations.
Resumo:
Levulinic acid (LA) is a polyfunctional molecule obtained from biomass. Because of its structure, the United States Department of energy classified LA as one of the top 12 building block chemicals. Typically, it is valorized through chemical reduction to γ-valerolactone (GVL). It is usually done with H2 in batch systems with high H2 pressures and noble metal catalysts, making it expensive and less applicable. Therefore, alternative approaches such as catalytic transfer hydrogenation (CTH) through the Meerwein–Ponndorf–Verley (MPV) reaction over heterogeneous catalysts have been studied. This uses organic molecules (alcohols) which act as a hydride transfer agent (H-donor), to reduce molecules containing carbonyl groups. Given the stability of the intermediate, reports have shown the batch liquid-phase CTH of levulinate esters with secondary alcohols, and remarkable results (GVL yield) have been obtained over ZrO2, given the need of a Lewis acid (LASites) and base pair for CTH. However, there were no reports of the continuous gas-phase CTH of levulinate esters. Therefore, high surface area ZrO2 was tested for gas-phase CTH of methyl levulinate (ML) using ethanol, methanol and isopropanol as H-donors. Under optimized conditions with ethanol (250 ℃), the reaction is selective towards GVL (yield 70%). However, heavy carbonaceous materials over the catalyst surface progressively blocked LASites changing the chemoselectivity. The in situ regeneration of the catalyst permitted a partial recovery of the LASites and an almost total recovery of the initial catalytic behavior, proving the deactivation reversible. Tests with methanol were not promising (ML conversion 35%, GVL yield 4%). As expected, using isopropanol provided complete conversion and a GVL yield of 80%. The reaction was also tested using bioethanol derived from agricultural waste. In addition, a preliminary study was performed for the hydrogenolysis of polyols to produce bioethanol, were Pd-Fe catalyst promoted the ethanol selective (37%) hydrogenolysis of glycerol.
Resumo:
Maleic anhydride (MA) is a very versatile molecule, indeed, with three functional groups (two carbonyl groups and one double bond C=C) it is an excellent joining and cross-linking material. It is obtained via selective oxidation of n-butane, using vanadyl pyrophosphate as a catalyst. The catalytic system has been largely studied over the years and it is normally used in the industrial production of MA, but the main open problem is to completely control its preparation. This thesis reports the effect of different preparation parameters employed during the calcination procedure for the transformation of precursor into the active catalyst. The thermal treatment is already known to be favoured in the presence of water, hence the first study was on the role of different amount of water co-fed with air, leading to obtain catalysts with an higher crystallinity. This is not the only parameter to control: the molar ratio of oxygen has also an important role, to obtain an active and selective catalyst. Some tests decreasing the “oxidizing power” of the mixture were carried out and it was observed a progressive development of VPP phase instead of oxidized V/P/O systems. Established the role of water and oxygen, the optimal conditions have been found when a mixture composed of air, water and nitrogen was used for the calcination, in the molar ratio of 30:10:60% respectively. Also at the lower temperature tested, i.e. 400°C, the catalyst presents the higher conversion of n-butane and MA yield compared to all other samples. The important conclusion we have reached is that not higher amount of water is necessary to obtain the most performing catalyst, thus leading to economic savings. Performing the same experiments on two different precursors, give catalysts with different activity but the mixture previously descripted is always the one that leads to the best performance.
Resumo:
The main purpose of my PhD was the combination of the principles of transition metal catalysis with photoredox catalysis. We focused our attention on the development of novel dual catalytic protocols for the functionalization of carbonyl compounds through the generation of transient nucleophilic organometallic species. Specifically, we focused on the development of new methodologies combining photoredox catalysis with titanium and nickel in low oxidation state. Firstly, a Barbier-type allylation of aromatic and aliphatic aldehydes –catalytic in titanium– in the presence of a blue photon-absorbing dye was developed. Parallelly, we were pleased to observe that the developed methodology could also be extended to the propargylation of aldehydes under analogous conditions. After an extensive re–optimization of all the reaction parameters, we developed an enantioselective and diastereoselective pinacol coupling of aromatic aldehydes promoted by non-toxic, cheap and easy to synthetize titanium complexes. The key feature, that allows the complete (dia)stereocontrol played by titanium, is the employment of a red-absorbing organic dye. The tailored (photo)redox properties of the red-absorbing organic dye [nPr–DMQA+][BF4–] promote the selective reduction of Ti(IV) to Ti(III). Moreover, even if the major contribution in dual photoredox and nickel catalysis is devoted to the realization of cross-coupling-type reactions, we wanted to evaluate different possible scenarios. Our focus was on the possibility of exploiting intermediates arising from the oxidative addition of nickel complexes as transient nucleophilic species. The first topic considered regarded the possibility to perform allylation of aldehydes by dual photoredox and nickel catalysis. In the first instance, a non–stereocontrolled version of the reaction was presented. Finally, after a long series of drastic modification of the reaction conditions, a highly enantioselective variant of the protocol was also reported. All the reported methodologies are supported by careful photophysical analysis and, in some cases, computational modelling.