32 resultados para Seismic input
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Forecasting the time, location, nature, and scale of volcanic eruptions is one of the most urgent aspects of modern applied volcanology. The reliability of probabilistic forecasting procedures is strongly related to the reliability of the input information provided, implying objective criteria for interpreting the historical and monitoring data. For this reason both, detailed analysis of past data and more basic research into the processes of volcanism, are fundamental tasks of a continuous information-gain process; in this way the precursor events of eruptions can be better interpreted in terms of their physical meanings with correlated uncertainties. This should lead to better predictions of the nature of eruptive events. In this work we have studied different problems associated with the long- and short-term eruption forecasting assessment. First, we discuss different approaches for the analysis of the eruptive history of a volcano, most of them generally applied for long-term eruption forecasting purposes; furthermore, we present a model based on the characteristics of a Brownian passage-time process to describe recurrent eruptive activity, and apply it for long-term, time-dependent, eruption forecasting (Chapter 1). Conversely, in an effort to define further monitoring parameters as input data for short-term eruption forecasting in probabilistic models (as for example, the Bayesian Event Tree for eruption forecasting -BET_EF-), we analyze some characteristics of typical seismic activity recorded in active volcanoes; in particular, we use some methodologies that may be applied to analyze long-period (LP) events (Chapter 2) and volcano-tectonic (VT) seismic swarms (Chapter 3); our analysis in general are oriented toward the tracking of phenomena that can provide information about magmatic processes. Finally, we discuss some possible ways to integrate the results presented in Chapters 1 (for long-term EF), 2 and 3 (for short-term EF) in the BET_EF model (Chapter 4).
Resumo:
In the thesis I exploit an empirical analysis on firm's productivity. I relate the efficiency at plant level with the input market features and I suggest an estimation technique for production function that takes into account firm's liquidity constraints. The main results are three. When I consider services as inputs for manufacturing firm's production process, I find that more competition in service sector affects positively plants productivity and export decision. Secondly liquidity constraints are important for the calculation of firm's productivity because they are a second source of firm's heterogeneity. Third liquidity constraints are important for firm's internationalization
Resumo:
In this work a multidisciplinary study of the December 26th, 2004 Sumatra earthquake has been carried out. We have investigated both the effect of the earthquake on the Earth rotation and the stress field variations associated with the seismic event. In the first part of the work we have quantified the effects of a water mass redistribution associated with the propagation of a tsunami wave on the Earth’s pole path and on the length-of-day (LOD) and applied our modeling results to the tsunami following the 2004 giant Sumatra earthquake. We compared the result of our simulations on the instantaneous rotational axis variations with some preliminary instrumental evidences on the pole path perturbation (which has not been confirmed yet) registered just after the occurrence of the earthquake, which showed a step-like discontinuity that cannot be attributed to the effect of a seismic dislocation. Our results show that the perturbation induced by the tsunami on the instantaneous rotational pole is characterized by a step-like discontinuity, which is compatible with the observations but its magnitude turns out to be almost one hundred times smaller than the detected one. The LOD variation induced by the water mass redistribution turns out to be not significant because the total effect is smaller than current measurements uncertainties. In the second part of this work of thesis we modeled the coseismic and postseismic stress evolution following the Sumatra earthquake. By means of a semi-analytical, viscoelastic, spherical model of global postseismic deformation and a numerical finite-element approach, we performed an analysis of the stress diffusion following the earthquake in the near and far field of the mainshock source. We evaluated the stress changes due to the Sumatra earthquake by projecting the Coulomb stress over the sequence of aftershocks taken from various catalogues in a time window spanning about two years and finally analyzed the spatio-temporal pattern. The analysis performed with the semi-analytical and the finite-element modeling gives a complex picture of the stress diffusion, in the area under study, after the Sumatra earthquake. We believe that the results obtained with the analytical method suffer heavily for the restrictions imposed, on the hypocentral depths of the aftershocks, in order to obtain the convergence of the harmonic series of the stress components. On the contrary we imposed no constraints on the numerical method so we expect that the results obtained give a more realistic description of the stress variations pattern.
Resumo:
Every seismic event produces seismic waves which travel throughout the Earth. Seismology is the science of interpreting measurements to derive information about the structure of the Earth. Seismic tomography is the most powerful tool for determination of 3D structure of deep Earth's interiors. Tomographic models obtained at the global and regional scales are an underlying tool for determination of geodynamical state of the Earth, showing evident correlation with other geophysical and geological characteristics. The global tomographic images of the Earth can be written as a linear combinations of basis functions from a specifically chosen set, defining the model parameterization. A number of different parameterizations are commonly seen in literature: seismic velocities in the Earth have been expressed, for example, as combinations of spherical harmonics or by means of the simpler characteristic functions of discrete cells. With this work we are interested to focus our attention on this aspect, evaluating a new type of parameterization, performed by means of wavelet functions. It is known from the classical Fourier theory that a signal can be expressed as the sum of a, possibly infinite, series of sines and cosines. This sum is often referred as a Fourier expansion. The big disadvantage of a Fourier expansion is that it has only frequency resolution and no time resolution. The Wavelet Analysis (or Wavelet Transform) is probably the most recent solution to overcome the shortcomings of Fourier analysis. The fundamental idea behind this innovative analysis is to study signal according to scale. Wavelets, in fact, are mathematical functions that cut up data into different frequency components, and then study each component with resolution matched to its scale, so they are especially useful in the analysis of non stationary process that contains multi-scale features, discontinuities and sharp strike. Wavelets are essentially used in two ways when they are applied in geophysical process or signals studies: 1) as a basis for representation or characterization of process; 2) as an integration kernel for analysis to extract information about the process. These two types of applications of wavelets in geophysical field, are object of study of this work. At the beginning we use the wavelets as basis to represent and resolve the Tomographic Inverse Problem. After a briefly introduction to seismic tomography theory, we assess the power of wavelet analysis in the representation of two different type of synthetic models; then we apply it to real data, obtaining surface wave phase velocity maps and evaluating its abilities by means of comparison with an other type of parametrization (i.e., block parametrization). For the second type of wavelet application we analyze the ability of Continuous Wavelet Transform in the spectral analysis, starting again with some synthetic tests to evaluate its sensibility and capability and then apply the same analysis to real data to obtain Local Correlation Maps between different model at same depth or between different profiles of the same model.
Resumo:
In the recent years, consumers became more aware and sensible in respect to environment and food safety matters. They are more and more interested in organic agriculture and markets and tend to prefer ‘organic’ products more than their traditional counterparts. To increase the quality and reduce the cost of production in organic and low-input agriculture, the 6FP-European “QLIF” project investigated the use of natural products such as bio-inoculants. They are mostly composed by arbuscular mycorrhizal fungi and other microorganisms, so-called “plant probiotic” microorganisms (PPM), because they help keeping an high yield, even under abiotic and biotic stressful conditions. Italian laws (DLgs 217, 2006) have recently included them as “special fertilizers”. This thesis focuses on the use of special fertilizers when growing tomatoes with organic methods in open field conditions, and the effects they induce on yield, quality and microbial rhizospheric communities. The primary objective was to achieve a better understanding of how plant-probiotic micro-flora management could buffer future reduction of external inputs, while keeping tomato fruit yield, quality and system sustainability. We studied microbial rhizospheric communities with statistical, molecular and histological methods. This work have demonstrated that long-lasting introduction of inoculum positively affected micorrhizal colonization and resistance against pathogens. Instead repeated introduction of compost negatively affected tomato quality, likely because it destabilized the ripening process, leading to over-ripening and increasing the amount of not-marketable product. Instead. After two years without any significant difference, the third year extreme combinations of inoculum and compost inputs (low inoculum with high amounts of compost, or vice versa) increased mycorrhizal colonization. As a result, in order to reduce production costs, we recommend using only inoculum rather than compost. Secondly, this thesis analyses how mycorrhizal colonization varies in respect to different tomato cultivars and experimental field locations. We found statistically significant differences between locations and between arbuscular colonization patterns per variety. To confirm these histological findings, we started a set of molecular experiments. The thesis discusses preliminary results and recommends their continuation and refinement to gather the complete results.
Resumo:
The research for this PhD project consisted in the application of the RFs analysis technique to different data-sets of teleseismic events recorded at temporary and permanent stations located in three distinct study regions: Colli Albani area, Northern Apennines and Southern Apennines. We found some velocity models to interpret the structures in these regions, which possess very different geologic and tectonics characteristics and therefore offer interesting case study to face. In the Colli Albani some of the features evidenced in the RFs are shared by all the analyzed stations: the Moho is almost flat and is located at about 23 km depth, and the presence of a relatively shallow limestone layer is a stable feature; contrariwise there are features which vary from station to station, indicating local complexities. Three seismic stations, close to the central part of the former volcanic edifice, display relevant anisotropic signatures with symmetry axes consistent with the emplacement of the magmatic chamber. Two further anisotropic layers are present at greater depth, in the lower crust and the upper mantle, respectively, with symmetry axes directions related to the evolution of the volcano complex. In Northern Apennines we defined the isotropic structure of the area, finding the depth of the Tyrrhenian (almost 25 km and flat) and Adriatic (40 km and dipping underneath the Apennines crests) Mohos. We determined a zone in which the two Mohos overlap, and identified an anisotropic body in between, involved in the subduction and going down with the Adiratic Moho. We interpreted the downgoing anisotropic layer as generated by post-subduction delamination of the top-slab layer, probably made of metamorphosed crustal rocks caught in the subduction channel and buoyantly rising toward the surface. In the Southern Apennines, we found the Moho depth for 16 seismic stations, and highlighted the presence of an anisotropic layer underneath each station, at about 15-20 km below the whole study area. The moho displays a dome-like geometry, as it is shallow (29 km) in the central part of the study area, whereas it deepens peripherally (down to 45 km); the symmetry axes of anisotropic layer, interpreted as a layer separating the upper and the lower crust, show a moho-related pattern, indicated by the foliation of the layer which is parallel to the Moho trend. Moreover, due to the exceptional seismic event occurred on April 6th next to L’Aquila town, we determined the Vs model for two station located next to the epicenter. An extremely high velocity body is found underneath AQU station at 4-10 km depth, reaching Vs of about 4 km/s, while this body is lacking underneath FAGN station. We compared the presence of this body with other recent works and found an anti-correlation between the high Vs body, the max slip patches and earthquakes distribution. The nature of this body is speculative since such high velocities are consistent with deep crust or upper mantle, but can be interpreted as a as high strength barrier of which the high Vs is a typical connotation.
Resumo:
Array seismology is an useful tool to perform a detailed investigation of the Earth’s interior. Seismic arrays by using the coherence properties of the wavefield are able to extract directivity information and to increase the ratio of the coherent signal amplitude relative to the amplitude of incoherent noise. The Double Beam Method (DBM), developed by Krüger et al. (1993, 1996), is one of the possible applications to perform a refined seismic investigation of the crust and mantle by using seismic arrays. The DBM is based on a combination of source and receiver arrays leading to a further improvement of the signal-to-noise ratio by reducing the error in the location of coherent phases. Previous DBM works have been performed for mantle and core/mantle resolution (Krüger et al., 1993; Scherbaum et al., 1997; Krüger et al., 2001). An implementation of the DBM has been presented at 2D large-scale (Italian data-set for Mw=9.3, Sumatra earthquake) and at 3D crustal-scale as proposed by Rietbrock & Scherbaum (1999), by applying the revised version of Source Scanning Algorithm (SSA; Kao & Shan, 2004). In the 2D application, the rupture front propagation in time has been computed. In 3D application, the study area (20x20x33 km3), the data-set and the source-receiver configurations are related to the KTB-1994 seismic experiment (Jost et al., 1998). We used 60 short-period seismic stations (200-Hz sampling rate, 1-Hz sensors) arranged in 9 small arrays deployed in 2 concentric rings about 1 km (A-arrays) and 5 km (B-array) radius. The coherence values of the scattering points have been computed in the crustal volume, for a finite time-window along all array stations given the hypothesized origin time and source location. The resulting images can be seen as a (relative) joint log-likelihood of any point in the subsurface that have contributed to the full set of observed seismograms.
Resumo:
This work is dedicated to the study of damaging phenomena involving reinforced concrete structures and masonry buildings and the consequences in terms of structural performances decay. In the Italian context there are many examples of structures that have already exceeded their service life, considering not only the ancient buildings but also infrastructures and R/C buildings that today are operating from more than 50th years. Climate change which is subject to the entire planet, with changing in seasonal weather and increasing in environmental pollution, is not excluded could have a harmful influence on the rate of building materials decay previously deemed as durables. If the aggressive input changes very fast, for example in a few decades, then it can also change the response of a construction material considered so far durable; in this way the knowledge about the art of good build, consolidated over the centuries, is thwarted. Hence this study is focused on the possibility to define the residual capacity for vertical or seismic loads for structures that are already at the limit of their service life, or for which is impossible to define a service life. The problem in an analysis of this kind, and that is what makes this research different from the main studies avaibles in the literature, is to keep in correlation – in a not so expensive computationally way – issues such as: - dangerous environmental inputs adequately simulated; - environmental conditions favorable to the spread of pollutants and development of the degradation reactions (decay’s speed); - link between environmental degradation and residual bearing capacity A more realistic assessment of materials residual performances that constitute the structure allows to leave the actual system for the residual load-bearing capacity estimation in which all factors are simply considered through the use of a safety factor on the materials properties.
Resumo:
The southern Apennines of Italy have been experienced several destructive earthquakes both in historic and recent times. The present day seismicity, characterized by small-to-moderate magnitude earthquakes, was used like a probe to obatin a deeper knowledge of the fault structures where the largest earthquakes occurred in the past. With the aim to infer a three dimensional seismic image both the problem of data quality and the selection of a reliable and robust tomographic inversion strategy have been faced. The data quality has been obtained to develop optimized procedures for the measurements of P- and S-wave arrival times, through the use of polarization filtering and to the application of a refined re-picking technique based on cross-correlation of waveforms. A technique of iterative tomographic inversion, linearized, damped combined with a strategy of multiscale inversion type has been adopted. The retrieved P-wave velocity model indicates the presence of a strong velocity variation along a direction orthogonal to the Apenninic chain. This variation defines two domains which are characterized by a relatively low and high velocity values. From the comparison between the inferred P-wave velocity model with a portion of a structural section available in literature, the high velocity body was correlated with the Apulia carbonatic platforms whereas the low velocity bodies was associated to the basinal deposits. The deduced Vp/Vs ratio shows that the ratio is lower than 1.8 in the shallower part of the model, while for depths ranging between 5 km and 12 km the ratio increases up to 2.1 in correspondence to the area of higher seismicity. This confirms that areas characterized by higher values are more prone to generate earthquakes as a response to the presence of fluids and higher pore-pressures.