3 resultados para Sedimentation and deposition
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Air quality represents a key issue in the so-called pollution “hot spots”: environments in which anthropogenic sources are concentrated and dispersion of pollutants is limited. One of these environments, the Po Valley, normally experiences exceedances of PM10 and PM2.5 concentration limits, especially in winter when the ventilation of the lower layers of the atmosphere is reduced. This thesis provides a highlight of the chemical properties of particulate matter and fog droplets in the Po Valley during the cold season, when fog occurrence is very frequent. Fog-particles interactions were investigated with the aim to determine their impact on the regional air quality. Size-segregated aerosol samples were collected in Bologna, urban site, and San Pietro Capofiume (SPC), rural site, during two campaigns (November 2011; February 2013) in the frame of Supersito project. The comparison between particles size-distribution and chemical composition in both sites showed the relevant contribution of the regional background and secondary processes in determining the Po Valley aerosol concentration. Occurrence of fog in November 2011 campaign in SPC allowed to investigate the role of fog formation and fog chemistry in the formation, processing and deposition of PM10. Nucleation scavenging was investigated with relation to the size and the chemical composition of particles. We found that PM1 concentration is reduced up to 60% because of fog scavenging. Furthermore, aqueous-phase secondary aerosol formation mechanisms were investigated through time-resolved measurements. In SPC fog samples have been systematically collected and analysed since the nineties; a 20 years long database has been assembled. This thesis reports for the first time the results of this long time series of measurements, showing a decrease of sulphate and nitrate concentration and an increase of pH that reached values close to neutrality. A detailed discussion about the occurred changes in fog water composition over two decades is presented.
Resumo:
The study of polymorphism has an important role in several fields of materials science, because structural differences lead to different physico-chemical properties of the system. This PhD work was dedicated to the investigation of polymorphism in Indigo, Thioindigo and Quinacridone, as case studies among the organic pigments employed as semiconductors, and in Paracetamol, Phenytoin and Nabumetone, chosen among some commonly used API. The aim of the research was to improve the understanding on the structures of bulk crystals and thin films, adopting Raman spectroscopy as the method of choice, while resorting to other experimental techniques to complement the gathered information. Different crystalline polymorphs, in fact, may be conveniently distinguished by their Raman spectra in the region of the lattice phonons (10-150 cm-1), the frequencies of which, probing the inter-molecular interactions, are very sensitive to even slight modifications in the molecular packing. In particular, we have used Confocal Raman Microscopy, which is a powerful, yet simple, technique for the investigation of crystal polymorphism in organic and inorganic materials, being capable of monitoring physical modifications, chemical transformations and phase inhomogeneities in crystal domains at the micrometre scale. In this way, we have investigated bulk crystals and thin film samples obtained with a variety of crystal growth and deposition techniques. Pure polymorphs and samples with phase mixing were found and fully characterized. Raman spectroscopy was complemented mainly by XRD measurements for bulk crystals and by AFM, GIXD and TEM for thin films. Structures and phonons of the investigated polymorphs were computed by DFT methods, and the comparison between theoretical and experimental results was used to assess the relative stability of the polymorphs and to assist the spectroscopic investigation. The Raman measurements were thus found to be able to clarify ambiguities in the phase assignments which otherwise the other methods were unable to solve.
Resumo:
The present work concerns with the study of debris flows and, in particular, with the related hazard in the Alpine Environment. During the last years several methodologies have been developed to evaluate hazard associated to such a complex phenomenon, whose velocity, impacting force and inappropriate temporal prediction are responsible of the related high hazard level. This research focuses its attention on the depositional phase of debris flows through the application of a numerical model (DFlowz), and on hazard evaluation related to watersheds morphometric, morphological and geological characterization. The main aims are to test the validity of DFlowz simulations and assess sources of errors in order to understand how the empirical uncertainties influence the predictions; on the other side the research concerns with the possibility of performing hazard analysis starting from the identification of susceptible debris flow catchments and definition of their activity level. 25 well documented debris flow events have been back analyzed with the model DFlowz (Berti and Simoni, 2007): derived form the implementation of the empirical relations between event volume and planimetric and cross section inundated areas, the code allows to delineate areas affected by an event by taking into account information about volume, preferential flow path and digital elevation model (DEM) of fan area. The analysis uses an objective methodology for evaluating the accuracy of the prediction and involve the calibration of the model based on factors describing the uncertainty associated to the semi empirical relationships. The general assumptions on which the model is based have been verified although the predictive capabilities are influenced by the uncertainties of the empirical scaling relationships, which have to be necessarily taken into account and depend mostly on errors concerning deposited volume estimation. In addition, in order to test prediction capabilities of physical-based models, some events have been simulated through the use of RAMMS (RApid Mass MovementS). The model, which has been developed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf and the Swiss Federal Institute for Snow and Avalanche Research (SLF) takes into account a one-phase approach based on Voellmy rheology (Voellmy, 1955; Salm et al., 1990). The input file combines the total volume of the debris flow located in a release area with a mean depth. The model predicts the affected area, the maximum depth and the flow velocity in each cell of the input DTM. Relatively to hazard analysis related to watersheds characterization, the database collected by the Alto Adige Province represents an opportunity to examine debris-flow sediment dynamics at the regional scale and analyze lithologic controls. With the aim of advancing current understandings about debris flow, this study focuses on 82 events in order to characterize the topographic conditions associated with their initiation , transportation and deposition, seasonal patterns of occurrence and examine the role played by bedrock geology on sediment transfer.