8 resultados para Scientometric indicators
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The general objective of this research is to explore theories and methodologies of sustainability indicators, environmental management and decision making disciplines with the operational purpose of producing scientific, robust and relevant information for supporting system understanding and decision making in real case studies. Several tools have been applied in order to increase the understanding of socio-ecological systems as well as providing relevant information on the choice between alternatives. These tools have always been applied having in mind the complexity of the issues and the uncertainty tied to the partial knowledge of the systems under study. Two case studies with specific application to performances measurement (environmental performances in the case of the K8 approach and sustainable development performances in the case of the EU Sustainable Development Strategy) and a case study about the selection of sustainable development indicators amongst Municipalities in Scotland, are discussed in the first part of the work. In the second part of the work, the common denominator among subjects consists in the application of spatial indices and indicators to address operational problems in land use management within the territory of the Ravenna province (Italy). The main conclusion of the thesis is that a ‘perfect’ methodological approach which always produces the best results in assessing sustainability performances does not exist. Rather, there is a pool of correct approaches answering different evaluation questions, to be used when methodologies fit the purpose of the analysis. For this reason, methodological limits and conceptual assumptions as well as consistency and transparency of the assessment, become the key factors for assessing the quality of the analysis.
Resumo:
Soil is a critically important component of the earth’s biosphere. Developing agricultural production systems able to conserve soil quality is essential to guarantee the current and future capacity of soil to provide goods and services. This study investigates the potential of microbial and biochemical parameters to be used as early and sensitive soil quality indicators. Their ability to differentiate plots under contrasting fertilization regimes is evaluated based also on their sensitivity to seasonal fluctuations of environmental conditions and on their relationship with soil chemical parameters. Further, the study addresses some of the critical methodological aspects of microplate-based fluorimetric enzyme assays, in order to optimize assay conditions and evaluate their suitability to be used as a toll to asses soil quality. The study was based on a long-term field experiment established in 1966 in the Po valley (Italy). The soil was cropped with maize (Z. mays L.) and winter wheat (T. aestivum L.) and received no organic fertilization, crop residue or manure, in combination with increasing levels of mineral N fertilizer. The soil microbiota responded to manure amendment increasing it biomass and activity and changing its community composition. Crop residue effect was much more limited. Mineral N fertilization stimulated crop residue mineralization, shifted microbial community composition and influenced N and P cycling enzyme activities. Seasonal fluctuations of environmental factors affected the soil microbiota. However microbial and biochemical parameters seasonality did not hamper the identification of fertilization-induced effects. Soil microbial community abundance, function and composition appeared to be strongly related to soil organic matter content and composition, confirming the close link existing between these soil quality indicators. Microplate-based fluorimetric enzyme assays showed potential to be used as fast and throughput toll to asses soil quality, but required proper optimization of the assay conditions for a precise estimation of enzymes maximum potential activity.
Resumo:
This study investigates the changes in soil fertility due to the different aggregate breakdown mechanisms and it analyses their relationships in different soil-plant systems, using physical aggregates behavior and organic matter (OM) changes as indicators. Three case studies were investigated: i) an organic agricultural soil, where a combined method, aimed to couple aggregate stability to nutrients loss, were tested; ii) a soil biosequence, where OM chemical characterisation and fractionation of aggregates on the basis of their physical behaviour were coupled and iii) a soils sequence in different phytoclimatic conditions, where isotopic C signature of separated aggregates was analysed. In agricultural soils the proposed combined method allows to identify that the severity of aggregate breakdown affected the quantity of nutrients lost more than nutrients availability, and that P, K and Mg were the most susceptible elements to water abrasion, while C and N were mainly susceptible to wetting. In the studied Chestnut-Douglas fir biosequence, OM chemical properties affected the relative importance of OM direct and indirect mechanisms (i.e., organic and organic-metallic cements, respectively) involved in aggregate stability and nutrient losses: under Douglas fir, high presence of carboxylate groups enhanced OM-metal interactions and stabilised aggregates; whereas under Chestnut, OM directly acted and fresh, more C-rich OM was preserved. OM direct mechanism seemed to be more efficient in C preservation in aggregates. The 13C natural abundance approach showed that, according to phytoclimatic conditions, stable macroaggregates can form both around partially decomposed OM and by organic-mineral interactions. In topsoils, aggregate resistance enhanced 13C-rich OM preservation, but in subsoils C preservation was due to other mechanisms, likely OM-mineral interactions. The proposed combined approach seems to be useful in the understanding of C and nutrients fate relates to water stresses, and in future research it could provide new insights into the complexity of soil biophysical processes.
Resumo:
Sustainability encompasses the presence of three dimensions that must coexist simultaneously, namely the environmental, social, and economic ones. The economic and social dimensions are gaining the spotlight in recent years, especially within food systems. To assess social and economic impacts, indicators and tools play a fundamental role in contributing to the achievements of sustainability targets, although few of them have deepen the focus on social and economic impacts. Moreover, in a framework of citizen science and bottom-up approach for improving food systems, citizen play a key role in defying their priorities in terms of social and economic interventions. This research expands the knowledge of social and economic sustainability indicators within the food systems for robust policy insights and interventions. This work accomplishes the following objectives: 1) to define social and economic indicators within the supply chain with a stakeholder perspective, 2) to test social and economic sustainability indicators for future food systems engaging young generations. The first objective was accomplished through the development of a systematic literature review of 34 social sustainability tools, based on five food supply chain stages, namely production, processing, wholesale, retail, and consumer considering farmers, workers, consumers, and society as stakeholders. The second objective was achieved by defining and testing new food systems social and economic sustainability indicators through youth engagement for informed and robust policy insights, to provide policymakers suggestions that would incorporate young generations ones. Future food systems scenarios were evaluated by youth through focus groups, whose results were analyzed through NVivo and then through a survey with a wider platform. Conclusion addressed the main areas of policy interventions in terms of social and economic aspects of sustainable food systems youth pointed out as in need of interventions, spanning from food labelling reporting sustainable origins to better access to online food services.
Resumo:
Background and aims: perioperative treatment is currently the gold standard approach for locally advanced gastric cancer (GC). Unfortunately, the phenomenon of patients dropping out of treatment has been frequently observed. The primary aims of this study were to verify if routine blood parameters, the inflammatory response markers, sarcopenia, and the depletion of adipose tissues were associated with compliance with neoadjuvant/perioperative chemotherapy. Methods and study design: sarcopenia and adipose indices were calculated with a CT scan before starting chemotherapy and before surgery. Blood samples were considered before the first and second cycles of chemotherapy. Results: A total of 84 patients with localized operable GC, were identified between September 2010 and January 2021. Forty-four patients (52.4%) did not complete the treatment according to the number of cycles planned/performed. Eight patients (9.5%) decided to suspend chemotherapy, seven patients (8.3%) discontinued because of clinical decision-making, 14 patients (16.7%) because of toxicity, and 15 patients (17.9%) for miscellaneous causes. Sarcopenia before starting chemotherapy was found to be present in 38 patients (50.7%) while it was in 47 patients (60%) at the CT scan before the gastrectomy. In multivariable analysis, both for changes tending to have a value of PLR at basal and in the second control a higher one than the cut-off (OR = 5.03, 95% CI: 1.34 - 18.89, p-value = 0.017), and for PLR which increased from a lower to a higher value in second control with respect to the cut off (OR = 4.64, 95% CI: 1.02 -21.02, p-value = 0.047) resulted associated with incomplete compliance. Conclusions: among the biological indicators, changes in the value of PLR with a tendency towards increasing compared to the cut-off appear to be an immediate indicator of incomplete compliance with neoadjuvant/perioperative treatment. More information is needed to reduce the causes of interruption.
Diffusive models and chaos indicators for non-linear betatron motion in circular hadron accelerators
Resumo:
Understanding the complex dynamics of beam-halo formation and evolution in circular particle accelerators is crucial for the design of current and future rings, particularly those utilizing superconducting magnets such as the CERN Large Hadron Collider (LHC), its luminosity upgrade HL-LHC, and the proposed Future Circular Hadron Collider (FCC-hh). A recent diffusive framework, which describes the evolution of the beam distribution by means of a Fokker-Planck equation, with diffusion coefficient derived from the Nekhoroshev theorem, has been proposed to describe the long-term behaviour of beam dynamics and particle losses. In this thesis, we discuss the theoretical foundations of this framework, and propose the implementation of an original measurement protocol based on collimator scans in view of measuring the Nekhoroshev-like diffusive coefficient by means of beam loss data. The available LHC collimator scan data, unfortunately collected without the proposed measurement protocol, have been successfully analysed using the proposed framework. This approach is also applied to datasets from detailed measurements of the impact on the beam losses of so-called long-range beam-beam compensators also at the LHC. Furthermore, dynamic indicators have been studied as a tool for exploring the phase-space properties of realistic accelerator lattices in single-particle tracking simulations. By first examining the classification performance of known and new indicators in detecting the chaotic character of initial conditions for a modulated Hénon map and then applying this knowledge to study the properties of realistic accelerator lattices, we tried to identify a connection between the presence of chaotic regions in the phase space and Nekhoroshev-like diffusive behaviour, providing new tools to the accelerator physics community.
Resumo:
This thesis presents a study of globular clusters (GCs), based on analysis of Monte Carlo simulations of globular clusters (GCs) with the aim to define new empirical parameters measurable from observations and able to trace the different phases of their dynamical evolution history. During their long term dynamical evolution, due to mass segregation and and dynamical friction, massive stars transfer kinetic energy to lower-mass objects, causing them to sink toward the cluster center. This continuous transfer of kinetic energy from the core to the outskirts triggers the runaway contraction of the core, known as "core collapse" (CC), followed by episodes of expansion and contraction called gravothermal oscillations. Clearly, such an internal dynamical evolution corresponds to significant variations also of the structure of the system. Determining the dynamical age of a cluster can be challenging as it depends on various internal and external properties. The traditional classification of GCs as CC or post-CC systems relies on detecting a steep power-law cusp in the central density profile, which may not always be reliable due to post-CC oscillations or other processes. In this thesis, based on the normalized cumulative radial distribution (nCRD) within a fraction of the half-mass radius is analyzed, and three diagnostics (A5, P5, and S2.5) are defined. These diagnostics show sensitivity to dynamical evolution and can distinguish pre-CC clusters from post-CC clusters.The analysis performed using multiple simulations with different initial conditions, including varying binary fractions and the presence of dark remnants showed the time variations of the diagnostics follow distinct patterns depending on the binary fraction and the retention or ejection of black holes. This analysis is extended to a larger set of simulations matching the observed properties of Galactic GCs, and the parameters show a potential to distinguish the dynamical stages of the observed clusters as well.