3 resultados para Sandstone

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this research is to improve the comprehension of the processes controlling the formation of caves and karst-like morphologies in quartz-rich lithologies (more than 90% quartz), like quartz-sandstones and metamorphic quartzites. In the scientific community the processes actually most retained to be responsible of these formations are explained in the “Arenisation Theory”. This implies a slow but pervasive dissolution of the quartz grain/mineral boundaries increasing the general porosity until the rock becomes incohesive and can be easily eroded by running waters. The loose sands produced by the weathering processes are then evacuated to the surface through processes of piping due to the infiltration of waters from the fracture network or the bedding planes. To deal with these problems we adopted a multidisciplinary approach through the exploration and the study of several cave systems in different tepuis. The first step was to build a theoretical model of the arenisation process, considering the most recent knowledge about the dissolution kinetics of quartz, the intergranular/grain boundaries diffusion processes, the primary diffusion porosity, in the simplified conditions of an open fracture crossed by a continuous flow of undersatured water. The results of the model were then compared with the world’s widest dataset (more than 150 analyses) of water geochemistry collected till now on the tepui, in superficial and cave settings. All these studies allowed verifying the importance and the effectiveness of the arenisation process that is confirmed to be the main process responsible of the primary formation of these caves and of the karst-like superficial morphologies. The numerical modelling and the field observations allowed evaluating a possible age of the cave systems around 20-30 million of years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Thrace Basin is the largest and thickest Tertiary sedimentary basin of the eastern Balkans region and constitutes an important hydrocarbon province. It is located between the Rhodope-Strandja Massif to the north and west, the Marmara Sea and Biga Peninsula to the south, and the Black Sea to the est. It consists of a complex system of depocenters and uplifts with very articulate paleotopography indicated by abrupt lateral facies variations. Its southeastern margin is widely deformed by the Ganos Fault, a segment of the North Anatolian strike-slip fault system . Most of the Thrace Basin fill ranges from the Eocene to the Late Oligocene. Maximum total thickness, including the Neogene-Quaternary succession, reaches 9.000 meters in a few narrow depocenters. This sedimentary succession consists mainly of basin plain turbiditic deposits with a significant volcaniclastic component which evolves upwards to shelf deposits and continental facies, with deltaic bodies prograding towards the basin center in the Oligocene. This work deals with the provenance of Eocene-Oligocene clastic sediments of the southern and western part of Thrace Basin in Turkey and Greece. Sandstone compositional data (78 gross composition analyses and 40 heavy minerals analyses) were used to understand the change in detrital modes which reflects the provenance and geodinamic evolution of the basin. Samples were collected at six localities, which are from west to est: Gökçeada, Gallipoli and South-Ganos (south of Ganos Fault), Alexandroupolis, Korudağ and North-Ganos (north of Ganos Fault). Petrologic (framework composition and heavy-mineral analyses) and stratigraphic-sedimentologic data, (analysis of sedimentologic facies associations along representative stratigraphic sections, paleocurrents) allowed discrimination of six petrofacies; for each petrofacies the sediment dispersal system was delineated. The Thrace Basin fill is made mainly of lithic arkoses and arkosic litharenites with variable amount of low-grade metamorphic lithics (also ophiolitic), neovolcanic lithics, and carbonate grains (mainly extrabasinal). Picotite is the most widespread heavy mineral in all petrofacies. Petrological data on analyzed successions show a complex sediment dispersal pattern and evolution of the basin, indicating one principal detrital input from a source area located to the south, along both the İzmir-Ankara and Intra-Pontide suture lines, and a possible secondary source area, represented by the Rhodope Massif to the west. A significant portion of the Thrace Basin sediments in the study area were derived from ophiolitic source rocks and from their oceanic cover, whereas epimetamorphic detrital components came from a low-grade crystalline basement. An important penecontemporaneous volcanic component is widespread in late Eocene-Oligocene times, indicating widespread post-collisional (collapse?) volcanism following the closure of the Vardar ocean. Large-scale sediment mass wasting from south to north along the southern margin of the Thrace Basin is indicated (i) in late Eocene time by large olistoliths of ophiolites and penecontemporaneous carbonates, and (ii) in the mid-Oligocene by large volcaniclastic olistoliths. The late Oligocene paleogeographic scenario was characterized by large deltaic bodies prograding northward (Osmancik Formation). This clearly indicates that the southern margin of the basin acted as a major sediment source area throughout its Eocene-Oligocene history. Another major sediment source area is represented by the Rhodope Massif, in particolar the Circum-Rhodopic belt, especially for plutonic and metamorphic rocks. Considering preexisting data on the petrologic composition of Thrace Basin, silicilastic sediments in Greece and Bulgaria (Caracciolo, 2009), a Rhodopian provenance could be considered mostly for areas of the Thrace Basin outside our study area, particularly in the northern-central portions of the basin. In summary, the most important source area for the sediment of Thrace Basin in the study area was represented by the exhumed subduction-accretion complex along the southern margin of the basin (Biga Peninsula and western-central Marmara Sea region). Most measured paleocurrent indicators show an eastward paleoflow but this is most likely the result of gravity flow deflection. This is possible considered a strong control due to the east-west-trending synsedimentary transcurrent faults which cuts the Thrace Basin, generating a series of depocenters and uplifts which deeply influenced sediment dispersal and the areal distribution of paleoenvironments. The Thrace Basin was long interpreted as a forearc basin between a magmatic arc to the north and a subduction-accretion complex to the south, developed in a context of northward subduction. This interpretation was challenged by more recent data emphasizing the lack of a coeval magmatic arc in the north and the interpretation of the chaotic deposit which outcrop south of Ganos Fault as olistoliths and large submarine slumps, derived from the erosion and sedimentary reworking of an older mélange unit located to the south (not as tectonic mélange formed in an accretionary prism). The present study corroborates instead the hypothesis of a post-collisional origin of the Thrace Basin, due to a phase of orogenic collapse, which generated a series of mid-Eocene depocenters all along the İzmir-Ankara suture (following closure of the Vardar-İzmir-Ankara ocean and the ensuing collision); then the slab roll-back of the remnant Pindos ocean played an important role in enhancing subsidence and creating additional accommodation space for sediment deposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Landslides of the lateral spreading type, involving brittle geological units overlying ductile terrains, are a common occurrence in the sandstone and limestone plateaux of the northern Apennines of Italy. These instability phenomena can become particularly risky, when historical towns and cultural heritage sites built on the top of them are endangered. Neverthless, the mechanisms controlling the developing of related instabilities, i.e. toppling and rock falls, at the edges of rock plateaux are not fully understood yet. In addition, the groundwater flow path developing at the contact between the more permeable units, i.e. the jointed rock slab, and the relatively impermeable clay-rich units have not been already studied in details, even if they may play a role in this kind of instability processes, acting as eventual predisposing and/or triggering factors. Field survey, Terrestrial Laser Scanner and Close Range Photogrammetry techniques, laboratory tests on the involved materials, hydrogeological monitoring and modelling, displacements evaluation and stability analysis through continuum and discontinuum numerical codes have been performed on the San Leo case study, with the aim to bring further insights for the understanding and the assessment of the slope processes taking place in this geological context. The current research permitted to relate the aquifer behaviour of the rocky slab to slope instability processes. The aquifer hosted in the fractured slab leads to the development of perennial and ephemeral springs at the contact between the two units. The related piping erosion phenomena, together with slope processes in the clay-shales led to the progressive undermining of the slab. The cliff becomes progressively unstable due to undermining and undergoes large-scale landslides due to fall or topple.